对数求导法
如何求 \(f(x)=x^x\) 的导数?
整体思路:通过构造对数幂底数改为不含元的 \(e\),同时利用指数上的对数将 \(x\) 次幂落入真数中从而得到易导的式子。
\[f^\prime(x)=(x^x)^\prime={({(e^{\ln x})}^x)}^\prime={(e^{x \ln x})}^\prime=(e^{x \ln x}) \times {(x \ln x)}^\prime=x^x(1+\ln x)
\]
.
另例:\(f(x)=(\ln x)^x\),求 \(f'(x)\).
解:
\[f'(x)={({{(e^{\ln \ln x})}^x})}^\prime={(e^{x \ln \ln x})}^\prime=(e^{x \ln \ln x})(\ln \ln x+ \frac{x}{x\ln x})=(\ln x)^x(\ln \ln x + \dfrac{1}{\ln x})
\]