SLAM+语音机器人DIY系列:(三)感知与大脑——3.轮式里程计与运动控制

 温馨提示

本篇文章已经收录在我最新出版的书籍《机器人SLAM导航核心技术与实战》,感兴趣的读者可以购买纸质书籍来进行更加深入和系统性的学习,购买链接如下:

摘要                                              

在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话。朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人。实现的关键是让机器人能通过传感器感知周围环境,并通过机器人大脑处理并输出反馈和执行动作。本章节涉及到的传感器有激光雷达、IMU、轮式里程计、麦克风、音响、摄像头,和用于处理信息的嵌入式主板。关于传感器的ROS驱动程序开发和在机器人上的使用在后面的章节会展开,本章节重点对机器人传感器和嵌入式主板进行讲解,主要内容:

1.ydlidar-x4激光雷达

2.带自校准九轴数据融合IMU惯性传感器

3.轮式里程计与运动控制

4.音响麦克风与摄像头

5.机器人大脑嵌入式主板性能对比

6.做一个能走路和对话的机器人



3.轮式里程计与运动控制             

底盘提供轮式里程计与运动控制,是机器人SLAM建图与避障导航的基础。所以对底盘进行了解,和熟悉轮式里程计与运动控制的底层原理是很有益处的。这里以我们的miiboo机器人的底盘为例,对底盘上的轮式里程计和运动控制的原理进行分析。

3.1.硬件概述                  

20miiboo机器人底盘

底盘主要由电机控制板和带编码器的减速电机构成,如图20。电机控制板通过串口与机器人的大脑(如树莓派3)相连接,通过接收大脑下发的控制指令,利用PID算法对电机进行控制;同时,采集电机上的编码器数据发送给大脑,利用航迹推演算法得到底盘的里程计信息。

3.2.轮式里程计与运动控制          

21)轮式里程计与运动控制

如图21,为轮式里程计与运动控制的系统框图。首先是机器人大脑发送控制命令,其实就是期望左、右电机达到的目标转速,我们都知道在一个控制系统中,被控对象很难完全按照期望目标来运行,这就需要引入反馈对被控对象进行实时的闭环控制,让被控对象尽量逼近期望目标,电机控制板主要就是用来实现这个过程。同时,电机控制板还负责对电机编码信号进行采样,将单位采样时间(一般为10ms)内的编码脉冲累计值作为里程数据发送给机器人大脑,机器人大脑利用航迹推演算法求解出里程计信息。

通信协议:

电机控制板与机器人大脑之间采用串口通信。电机左、右轮期望转速被封装到串口的字符串中,作为控制命令发送给电机控制板;单位时间(一般10ms)内采样到的电机编码脉冲累计值(等效为实际电机速度)作为里程数据,以同样的方式被封装到串口的字符串中发送给机器人大脑。可以看出,控制命令与里程数据遵循一样的封装协议,协议具体形式如图22

(图22)通信协议

电机控制:

(图23PID算法流程

电机控制最常用的就是PID控制算法,如图23PID算法流程。以电机转速控制为例,r(t)就是给定的目标转速,c(t)就是电机实际运行时的转速,通过闭环反馈可以求得r(t)c(t)的偏差值e(t)PID控制算法中的比例(P)、积分(I)、微分(D)调节器利用e(t)生成新的控制量u(t)u(t)通过执行机构(电机驱动器)作用于被控对象(电机),电机的实际运行速度c(t)通过闭环反馈,进入下一次PID调节。就这样,不断的通过闭环反馈调节,使电机实际运行速度c(t)最终逼近给定的目标速度r(t)

在连续和离散时间域上PID会有不同的表现形式,在连续时间域上积分、微分调节通过积分计算、微分计算实现,而在离散时间域上积分、微分调节通过累加和、差分计算实现。由于电机控制需要在程序上进行实现,所以需要采用离散域的PID。按照PID算法生成的调节量的形式,又可以分为位置式PID和增量式PID;位置式PID生成的u(t)为直接的控制量,增量式PID生成的Δu(t)是控制量的修正量,需要叠加上一次的u(t-1)才能作为控制量。离散形式的位置式与增量式PID数学表达如图24

(图24)离散形式的位置式与增量式PID数学表达

可以看出,利用位置PID的数学表达式经过简单的变形就能得到增量PID的数学表达式。增量算法不需要做累加,控制量增量的确定仅与最近几次误差采样值有关,计算误差或计算精度问题,对控制量的计算影响较小。而位置算法要用到过去的误差的累加值,容易产生大的累加误差。增量式算法得出的是控制量的增量,例如阀门控制中、只输出阀门开度的变化部分,误动作影响小,必要时通过逻辑判断限制或禁止本次输出,不会严重影响系统的工作。而位置算法的输出是控制量的全量输出,误动作影响大。增量型PID的程序实现,如如图25。关于PID参数的整定,将放在后面的文章进行详细讲解。

(图25)增量型PID的程序实现

差动两轮底盘轮式里程计:

轮式里程计是机器人底盘的重要组成部分,采用航迹推演算法对机器人的位姿进行估计,并对机器人当前的速度、旋转速度、左右轮速度进行转换。无论是机器人的定位导航还是普通的运动控制,都需要轮式里程计。

(图26)通过航迹推演计算里程计

如图26,为通过航迹推演计算里程计的过程。随时间推移机器人底盘的实时位姿p1p2p3...pn连接起来就形成了机器人的航迹,考虑很短的时间内两相邻机器人位姿p1p2,在已知机器人位姿p1和机器人当前左右轮速度vlvr的条件下,利用微积分的思想可以推算出机器人在下一个时刻的位姿p2,通过这样不断的推演,就可以计算出机器人当前的位姿以及速度、角速度等信息,这就是所谓的航迹推演。关于航迹推演的具体数学推导和程序实现,将在后面的文章中进行展开讲解。

底盘电机控制板软件框架:

(图27stm32电机控制板软件架构

如图27,为stm32电机控制板软件架构。底盘中的电机控制与里程数据采集的程序在stm32单片机上实现,TIM1定时器产生周期性的循环,循环中进行电机编码器数据采集、PID计算、电机速度pwm控制,剩下的就是usart1串口与usart2串口跟机器人大脑之间的通信了,底盘debug接口是用于stm32程序开发阶段使用的,所以在机器人正常运行的过程中只需要使用底盘控制接口。关于stm32部分的代码和对应机器人大脑中ROS驱动代码将在后面介绍。

3.3.在机器人中使用底盘           

通过前面的讲解,我们已经对机器人底盘的用途及工作原理有了一定的了解,并且知道了电机控制和里程计的工作过程。这时候肯定很想知道如何在机器人中把底盘使用起来呢?其实很简单,和激光雷达、IMU这些传感器一样,底盘也可以当做一个传感器来使用,只不过不同之处是这个传感器与机器人大脑是双向交互的,机器人大脑向底盘发送控制命令,底盘反馈里程数据给机器人大脑。但是,不论交互的细节如何,只需要装上底盘的ROS驱动包,上层算法只需要发布和订阅相应的主题就能达到使用底盘的目的。

28在机器人中使用底盘

底盘通过串口与机器人相连接,机器人中通过运行底盘控制ROS驱动,来实现读取串口的速度反馈,利用航迹推演算法计算得到里程计并发布到/odom这个主题;底盘控制ROS驱动订阅/cmd_vel主题的运动控制数据,并转换为速度控制指令通过串口发送给底盘。这样机器人上的其它节点就可以通过发布/cmd_vel主题来对底盘进行控制,通过订阅/odom主题获取底盘的里程计。关于底盘控制ROS驱动、底盘里程计标定、底盘的debug,将在后面的章节中具体讲解。

后记                  

------SLAM+语音机器人DIY系列【目录】快速导览------

第1章:Linux基础

1.Linux简介

2.安装Linux发行版ubuntu系统

3.Linux命令行基础操作

第2章:ROS入门

1.ROS是什么

2.ROS系统整体架构

3.在ubuntu16.04中安装ROS kinetic

4.如何编写ROS的第一个程序hello_world

5.编写简单的消息发布器和订阅器

6.编写简单的service和client

7.理解tf的原理

8.理解roslaunch在大型项目中的作用

9.熟练使用rviz

10.在实际机器人上运行ROS高级功能预览

第3章:感知与大脑

1.ydlidar-x4激光雷达

2.带自校准九轴数据融合IMU惯性传感器

3.轮式里程计与运动控制

4.音响麦克风与摄像头

5.机器人大脑嵌入式主板性能对比

6.做一个能走路和对话的机器人

第4章:差分底盘设计

1.stm32主控硬件设计

2.stm32主控软件设计

3.底盘通信协议

4.底盘ROS驱动开发

5.底盘PID控制参数整定

6.底盘里程计标

第5章:树莓派3开发环境搭建

1.安装系统ubuntu_mate_16.04

2.安装ros-kinetic

3.装机后一些实用软件安装和系统设置

4.PC端与robot端ROS网络通信

5.Android手机端与robot端ROS网络通信

6.树莓派USB与tty串口号绑定

7.开机自启动ROS节点

第6章:SLAM建图与自主避障导航

1.在机器人上使用传感器

2.google-cartographer机器人SLAM建图

3.ros-navigation机器人自主避障导航

4.多目标点导航及任务调度

5.机器人巡航与现场监控

第7章:语音交互与自然语言处理

1.语音交互相关技术

2.机器人语音交互实现

3.自然语言处理云计算引擎

第8章:高阶拓展

1.miiboo机器人安卓手机APP开发

2.centos7下部署Django(nginx+uwsgi+django+python3)

 


 

参考文献

 

[1] 张虎,机器人SLAM导航核心技术与实战[M]. 机械工业出版社,2022.

 

 

 

 

前言
编程基础篇
第1章 ROS入门必备知识
1.1 ROS简介 2
1.1.1 ROS的性能特色 2
1.1.2 ROS的发行版本 3
1.1.3 ROS的学习方法 3
1.2 ROS开发环境的搭建 3
1.2.1 ROS的安装 4
1.2.2 ROS文件的组织方式 4
1.2.3 ROS网络通信配置 5
1.2.4 集成开发工具 5
1.3 ROS系统架构 5
1.3.1 从计算图视角理解ROS架构 6
1.3.2 从文件系统视角理解ROS架构 7
1.3.3 从开源社区视角理解ROS架构 8
1.4 ROS调试工具 8
1.4.1 命令行工具 9
1.4.2 可视化工具 9
1.5 ROS节点通信 10
1.5.1 话题通信方式 12
1.5.2 服务通信方式 15
1.5.3 动作通信方式 19
1.6 ROS的其他重要概念 25
1.7 ROS 2.0展望 28
1.8 本章小结 28
第2章 C++编程范式
2.1 C++工程的组织结构 29
2.1.1 C++工程的一般组织结构 29
2.1.2 C++工程在机器人中的组织结构 29
2.2 C++代码的编译方法 30
2.2.1 使用g++编译代码 31
2.2.2 使用make编译代码 32
2.2.3 使用CMake编译代码 32
2.3 C++编程风格指南 33
2.4 本章小结 34
第3章 OpenCV图像处理
3.1 认识图像数据 35
3.1.1 获取图像数据 35
3.1.2 访问图像数据 36
3.2 图像滤波 37
3.2.1 线性滤波 37
3.2.2 非线性滤波 38
3.2.3 形态学滤波 39
3.3 图像变换 40
3.3.1 射影变换 40
3.3.2 霍夫变换 42
3.3.3 边缘检测 42
3.3.4 直方图均衡 43
3.4 图像特征点提取 44
3.4.1 SIFT特征点 44
3.4.2 SURF特征点 50
3.4.3 ORB特征点 52
3.5 本章小结 54
硬件基础篇
第4章 机器人传感器
4.1 惯性测量单元 56
4.1.1 工作原理 56
4.1.2 原始数据采集 60
4.1.3 参数标定 65
4.1.4 数据滤波 73
4.1.5 姿态融合 75
4.2 激光雷达 91
4.2.1 工作原理 92
4.2.2 性能参数 94
4.2.3 数据处理 96
4.3 相机 100
4.3.1 单目相机 101
4.3.2 双目相机 107
4.3.3 RGB-D相机 109
4.4 带编码器的减速电机 111
4.4.1 电机 111
4.4.2 电机驱动电路 112
4.4.3 电机控制主板 113
4.4.4 轮式里程计 117
4.5 本章小结 118
第5章 机器人主机
5.1 X86与ARM主机对比 119
5.2 ARM主机树莓派3B+ 120
5.2.1 安装Ubuntu MATE 18.04 120
5.2.2 安装ROS melodic 122
5.2.3 装机软件与系统设置 122
5.3 ARM主机RK3399 127
5.4 ARM主机Jetson-tx2 128
5.5 分布式架构主机 129
5.5.1 ROS网络通信 130
5.5.2 机器人程序的远程开发 130
5.6 本章小结 131
第6章 机器人底盘
6.1 底盘运动学模型 132
6.1.1 两轮差速模型 132
6.1.2 四轮差速模型 136
6.1.3 阿克曼模型 140
6.1.4 全向模型 144
6.1.5 其他模型 148
6.2 底盘性能指标 148
6.2.1 载重能力 148
6.2.2 动力性能 148
6.2.3 控制精度 150
6.2.4 里程计精度 150
6.3 典型机器人底盘搭建 151
6.3.1 底盘运动学模型选择 152
6.3.2 传感器选择 152
6.3.3 主机选择 153
6.4 本章小结 155
SLAM篇
第7章 SLAM中的数学基础
7.1 SLAM发展简史 158
7.1.1 数据关联、收敛和一致性 160
7.1.2 SLAM的基本理论 161
7.2 SLAM中的概率理论 163
7.2.1 状态估计问题 164
7.2.2 概率运动模型 166
7.2.3 概率观测模型 171
7.2.4 概率图模型 173
7.3 估计理论 182
7.3.1 估计量的性质 182
7.3.2 估计量的构建 183
7.3.3 各估计量对比 190
7.4 基于贝叶斯网络的状态估计 193
7.4.1 贝叶斯估计 194
7.4.2 参数化实现 196
7.4.3 非参数化实现 202
7.5 基于因子图的状态估计 206
7.5.1 非线性最小二乘估计 206
7.5.2 直接求解方法 206
7.5.3 优化方法 208
7.5.4 各优化方法对比 218
7.5.5 常用优化工具 219
7.6 典型SLAM算法 221
7.7 本章小结 221
第8章 激光SLAM系统
8.1 Gmapping算法 223
8.1.1 原理分析 223
8.1.2 源码解读 228
8.1.3 安装与运行 233
8.2 Cartographer算法 240
8.2.1 原理分析 240
8.2.2 源码解读 247
8.2.3 安装与运行 258
8.3 LOAM算法 266
8.3.1 原理分析 266
8.3.2 源码解读 267
8.3.3 安装与运行 270
8.4 本章小结 270
第9章 视觉SLAM系统
9.1 ORB-SLAM2算法 274
9.1.1 原理分析 274
9.1.2 源码解读 310
9.1.3 安装与运行 319
9.1.4 拓展 327
9.2 LSD-SLAM算法 329
9.2.1 原理分析 329
9.2.2 源码解读 334
9.2.3 安装与运行 337
9.3 SVO算法 338
9.3.1 原理分析 338
9.3.2 源码解读 341
9.4 本章小结 341
第10章 其他SLAM系统
10.1 RTABMAP算法 344
10.1.1 原理分析 344
10.1.2 源码解读 351
10.1.3 安装与运行 357
10.2 VINS算法 362
10.2.1 原理分析 364
10.2.2 源码解读 373
10.2.3 安装与运行 376
10.3 机器学习与SLAM 379
10.3.1 机器学习 379
10.3.2 CNN-SLAM算法 411
10.3.3 DeepVO算法 413
10.4 本章小结 414
自主导航篇
第11章 自主导航中的数学基础
11.1 自主导航 418
11.2 环境感知 420
11.2.1 实时定位 420
11.2.2 环境建模 421
11.2.3 语义理解 422
11.3 路径规划 422
11.3.1 常见的路径规划算法 423
11.3.2 带约束的路径规划算法 430
11.3.3 覆盖的路径规划算法 434
11.4 运动控制 435
11.4.1 基于PID的运动控制 437
11.4.2 基于MPC的运动控制 438
11.4.3 基于强化学习的运动控制 441
11.5 强化学习与自主导航 442
11.5.1 强化学习 443
11.5.2 基于强化学习的自主导航 465
11.6 本章小结 467
第12章 典型自主导航系统
12.1 ros-navigation导航系统 470
12.1.1 原理分析 470
12.1.2 源码解读 475
12.1.3 安装与运行 479
12.1.4 路径规划改进 492
12.1.5 环境探索 496
12.2 riskrrt导航系统 498
12.3 autoware导航系统 499
12.4 导航系统面临的一些挑战 500
12.5 本章小结 500
第13章 机器人SLAM导航综合实战
13.1 运行机器人上的传感器 502
13.1.1 运行底盘的ROS驱动 503
13.1.2 运行激光雷达的ROS驱动 503
13.1.3 运行IMU的ROS驱动 504
13.1.4 运行相机的ROS驱动 504
13.1.5 运行底盘的urdf模型 505
13.1.6 传感器一键启动 506
13.2 运行SLAM建图功能 506
13.2.1 运行激光SLAM建图功能 507
13.2.2 运行视觉SLAM建图功能 508
13.2.3 运行激光与视觉联合建图功能 508
13.3 运行自主导航 509
13.4 基于自主导航的应用 510
13.5 本章小结 511
附录A Linux与SLAM性能优化的探讨
附录B 习题
posted @ 2019-02-19 03:16  小虎哥哥爱学习  阅读(9982)  评论(0编辑  收藏  举报