SLAM+语音机器人DIY系列:(二)ROS入门——7.理解tf的原理

 温馨提示

本篇文章已经收录在我最新出版的书籍《机器人SLAM导航核心技术与实战》,感兴趣的读者可以购买纸质书籍来进行更加深入和系统性的学习,购买链接如下:

摘要                                          

ROS机器人操作系统在机器人应用领域很流行,依托代码开源和模块间协作等特性,给机器人开发者带来了很大的方便。我们的机器人“miiboo”中的大部分程序也采用ROS进行开发,所以本文就重点对ROS基础知识进行详细的讲解,给不熟悉ROS的朋友起到一个抛砖引玉的作用。本章节主要内容:

1.ROS是什么

2.ROS系统整体架构

3.在ubuntu16.04中安装ROS kinetic

4.如何编写ROS的第一个程序hello_world

5.编写简单的消息发布器和订阅器

6.编写简单的service和client

7.理解tf的原理

8.理解roslaunch在大型项目中的作用

9.熟练使用rviz

10.在实际机器人上运行ROS高级功能预览



7.理解tf的原理                          

1)机器人中的坐标系

一个机器人系统中通常会有多个三维参考坐标系,而且这些坐标系之间的相对关系随时间推移会变化。这里举一个实际的机器人应用场景例子,来说明这种关系和变化:

全局世界坐标系:通常为激光slam构建出来的栅格地图的坐标系map

机器人底盘坐标系:通常为机器人底盘的坐标系base_footprint

机器人上各部件自己的坐标系:比如激光雷达、imu等传感器自己的坐标系base_laser_linkimu_link

这些坐标系之间的关系有些是静态的、有些是动态的。比如当机器人底盘移动的过程中,机器人底盘与世界的相对关系map->base_footprint就会随之变化;而安装在机器人底盘上的激光雷达、imu这些传感器与机器人底盘的相对关系base_footprint->base_laser_linkbase_footprint->imu_link就不会随之变化。其实,这个很好理解。

如图25中,map->base_footprint会随着底盘的移动而变化,即动态坐标系关系。

(图25)动态坐标系关系

如图26中,base_footprint->base_laser_linkbase_footprint->imu_link不会随着底盘的移动而变化,即静态坐标系关系。

(图26)静态坐标系关系

2)机器人坐标关系工具tf

由于坐标及坐标转换在机器人系统中非常重要,特别是机器人在环境地图中自主定位和导航、机械手臂对物体进行复杂的抓取任务,都需要精确的知道机器人各部件之间的相对位置及机器人在工作环境中的相对位置。因此ROS专门提供了tf这个工具用于简化这些工作。

tf可以让用户随时跟踪多个坐标系的关系,机器人各个坐标系之间的关系是通过一种树型数据结构来存储和维护的,即tf tree。借助这个tf tree,用户可以在任意时间将点、向量等数据的坐标在两个坐标系中完成坐标值变换。

如图27,为一个自主导航机器人的tf tree结构图。圆圈中是坐标系的名称,箭头表示两个坐标系之间的关系,箭头上会显示该坐标关系的发布者、发布速率、时间戳等信息。

(图27)一个自主导航机器人的tf tree结构图

3)使用tf

使用tf分为两个部分,广播tf变换、监听tf变换。

广播tf变换:

ROS网络中的节点可以向系统广播坐标系之间的变换关系。比如负责机器人全局定位的amcl节点会广播map->odom的变换关系,负责机器人局部定位的轮式里程计计算节点会广播odom->base_footprint的变换关系,机器人底盘上安装的传感器与底盘的变换关系可以通过urdf机器人模型进行广播(urdf将在后面实际机器人中进行讲解)。每个节点的广播都可以直接将变换关系插入tf tree,不需要进行同步。通过多个节点广播坐标变换的关系,便可以实现tf tree的动态维护。

关于广播tf变换的具体程序实现,请直接参考ROS官方教程http://wiki.ros.org/tf/Tutorials

监听tf变换:

ROS网络中的节点可以从系统监听坐标系之间的变换关系,并从中查询所需要的坐标变换。比如要知道机器人底盘当前在栅格地图坐标系下的什么地方,就可以通过监听map->base_footprint来实现,比如要知道机器人底盘坐标系上的某个坐标点在世界坐标系下的坐标是多少,就可以通过监听map->base_footprint,并通过map->base_footprint这个变换查询出变换后的坐标点取值。

关于监听tf变换的具体程序实现,请直接参考ROS官方教程http://wiki.ros.org/tf/Tutorials

后记                                          

------SLAM+语音机器人DIY系列【目录】快速导览------

第1章:Linux基础

1.Linux简介

2.安装Linux发行版ubuntu系统

3.Linux命令行基础操作

第2章:ROS入门

1.ROS是什么

2.ROS系统整体架构

3.在ubuntu16.04中安装ROS kinetic

4.如何编写ROS的第一个程序hello_world

5.编写简单的消息发布器和订阅器

6.编写简单的service和client

7.理解tf的原理

8.理解roslaunch在大型项目中的作用

9.熟练使用rviz

10.在实际机器人上运行ROS高级功能预览

第3章:感知与大脑

1.ydlidar-x4激光雷达

2.带自校准九轴数据融合IMU惯性传感器

3.轮式里程计与运动控制

4.音响麦克风与摄像头

5.机器人大脑嵌入式主板性能对比

6.做一个能走路和对话的机器人

第4章:差分底盘设计

1.stm32主控硬件设计

2.stm32主控软件设计

3.底盘通信协议

4.底盘ROS驱动开发

5.底盘PID控制参数整定

6.底盘里程计标

第5章:树莓派3开发环境搭建

1.安装系统ubuntu_mate_16.04

2.安装ros-kinetic

3.装机后一些实用软件安装和系统设置

4.PC端与robot端ROS网络通信

5.Android手机端与robot端ROS网络通信

6.树莓派USB与tty串口号绑定

7.开机自启动ROS节点

第6章:SLAM建图与自主避障导航

1.在机器人上使用传感器

2.google-cartographer机器人SLAM建图

3.ros-navigation机器人自主避障导航

4.多目标点导航及任务调度

5.机器人巡航与现场监控

第7章:语音交互与自然语言处理

1.语音交互相关技术

2.机器人语音交互实现

3.自然语言处理云计算引擎

第8章:高阶拓展

1.miiboo机器人安卓手机APP开发

2.centos7下部署Django(nginx+uwsgi+django+python3)

 


 

参考文献

 

[1] 张虎,机器人SLAM导航核心技术与实战[M]. 机械工业出版社,2022.

 

 

 

 

前言
编程基础篇
第1章 ROS入门必备知识
1.1 ROS简介 2
1.1.1 ROS的性能特色 2
1.1.2 ROS的发行版本 3
1.1.3 ROS的学习方法 3
1.2 ROS开发环境的搭建 3
1.2.1 ROS的安装 4
1.2.2 ROS文件的组织方式 4
1.2.3 ROS网络通信配置 5
1.2.4 集成开发工具 5
1.3 ROS系统架构 5
1.3.1 从计算图视角理解ROS架构 6
1.3.2 从文件系统视角理解ROS架构 7
1.3.3 从开源社区视角理解ROS架构 8
1.4 ROS调试工具 8
1.4.1 命令行工具 9
1.4.2 可视化工具 9
1.5 ROS节点通信 10
1.5.1 话题通信方式 12
1.5.2 服务通信方式 15
1.5.3 动作通信方式 19
1.6 ROS的其他重要概念 25
1.7 ROS 2.0展望 28
1.8 本章小结 28
第2章 C++编程范式
2.1 C++工程的组织结构 29
2.1.1 C++工程的一般组织结构 29
2.1.2 C++工程在机器人中的组织结构 29
2.2 C++代码的编译方法 30
2.2.1 使用g++编译代码 31
2.2.2 使用make编译代码 32
2.2.3 使用CMake编译代码 32
2.3 C++编程风格指南 33
2.4 本章小结 34
第3章 OpenCV图像处理
3.1 认识图像数据 35
3.1.1 获取图像数据 35
3.1.2 访问图像数据 36
3.2 图像滤波 37
3.2.1 线性滤波 37
3.2.2 非线性滤波 38
3.2.3 形态学滤波 39
3.3 图像变换 40
3.3.1 射影变换 40
3.3.2 霍夫变换 42
3.3.3 边缘检测 42
3.3.4 直方图均衡 43
3.4 图像特征点提取 44
3.4.1 SIFT特征点 44
3.4.2 SURF特征点 50
3.4.3 ORB特征点 52
3.5 本章小结 54
硬件基础篇
第4章 机器人传感器
4.1 惯性测量单元 56
4.1.1 工作原理 56
4.1.2 原始数据采集 60
4.1.3 参数标定 65
4.1.4 数据滤波 73
4.1.5 姿态融合 75
4.2 激光雷达 91
4.2.1 工作原理 92
4.2.2 性能参数 94
4.2.3 数据处理 96
4.3 相机 100
4.3.1 单目相机 101
4.3.2 双目相机 107
4.3.3 RGB-D相机 109
4.4 带编码器的减速电机 111
4.4.1 电机 111
4.4.2 电机驱动电路 112
4.4.3 电机控制主板 113
4.4.4 轮式里程计 117
4.5 本章小结 118
第5章 机器人主机
5.1 X86与ARM主机对比 119
5.2 ARM主机树莓派3B+ 120
5.2.1 安装Ubuntu MATE 18.04 120
5.2.2 安装ROS melodic 122
5.2.3 装机软件与系统设置 122
5.3 ARM主机RK3399 127
5.4 ARM主机Jetson-tx2 128
5.5 分布式架构主机 129
5.5.1 ROS网络通信 130
5.5.2 机器人程序的远程开发 130
5.6 本章小结 131
第6章 机器人底盘
6.1 底盘运动学模型 132
6.1.1 两轮差速模型 132
6.1.2 四轮差速模型 136
6.1.3 阿克曼模型 140
6.1.4 全向模型 144
6.1.5 其他模型 148
6.2 底盘性能指标 148
6.2.1 载重能力 148
6.2.2 动力性能 148
6.2.3 控制精度 150
6.2.4 里程计精度 150
6.3 典型机器人底盘搭建 151
6.3.1 底盘运动学模型选择 152
6.3.2 传感器选择 152
6.3.3 主机选择 153
6.4 本章小结 155
SLAM篇
第7章 SLAM中的数学基础
7.1 SLAM发展简史 158
7.1.1 数据关联、收敛和一致性 160
7.1.2 SLAM的基本理论 161
7.2 SLAM中的概率理论 163
7.2.1 状态估计问题 164
7.2.2 概率运动模型 166
7.2.3 概率观测模型 171
7.2.4 概率图模型 173
7.3 估计理论 182
7.3.1 估计量的性质 182
7.3.2 估计量的构建 183
7.3.3 各估计量对比 190
7.4 基于贝叶斯网络的状态估计 193
7.4.1 贝叶斯估计 194
7.4.2 参数化实现 196
7.4.3 非参数化实现 202
7.5 基于因子图的状态估计 206
7.5.1 非线性最小二乘估计 206
7.5.2 直接求解方法 206
7.5.3 优化方法 208
7.5.4 各优化方法对比 218
7.5.5 常用优化工具 219
7.6 典型SLAM算法 221
7.7 本章小结 221
第8章 激光SLAM系统
8.1 Gmapping算法 223
8.1.1 原理分析 223
8.1.2 源码解读 228
8.1.3 安装与运行 233
8.2 Cartographer算法 240
8.2.1 原理分析 240
8.2.2 源码解读 247
8.2.3 安装与运行 258
8.3 LOAM算法 266
8.3.1 原理分析 266
8.3.2 源码解读 267
8.3.3 安装与运行 270
8.4 本章小结 270
第9章 视觉SLAM系统
9.1 ORB-SLAM2算法 274
9.1.1 原理分析 274
9.1.2 源码解读 310
9.1.3 安装与运行 319
9.1.4 拓展 327
9.2 LSD-SLAM算法 329
9.2.1 原理分析 329
9.2.2 源码解读 334
9.2.3 安装与运行 337
9.3 SVO算法 338
9.3.1 原理分析 338
9.3.2 源码解读 341
9.4 本章小结 341
第10章 其他SLAM系统
10.1 RTABMAP算法 344
10.1.1 原理分析 344
10.1.2 源码解读 351
10.1.3 安装与运行 357
10.2 VINS算法 362
10.2.1 原理分析 364
10.2.2 源码解读 373
10.2.3 安装与运行 376
10.3 机器学习与SLAM 379
10.3.1 机器学习 379
10.3.2 CNN-SLAM算法 411
10.3.3 DeepVO算法 413
10.4 本章小结 414
自主导航篇
第11章 自主导航中的数学基础
11.1 自主导航 418
11.2 环境感知 420
11.2.1 实时定位 420
11.2.2 环境建模 421
11.2.3 语义理解 422
11.3 路径规划 422
11.3.1 常见的路径规划算法 423
11.3.2 带约束的路径规划算法 430
11.3.3 覆盖的路径规划算法 434
11.4 运动控制 435
11.4.1 基于PID的运动控制 437
11.4.2 基于MPC的运动控制 438
11.4.3 基于强化学习的运动控制 441
11.5 强化学习与自主导航 442
11.5.1 强化学习 443
11.5.2 基于强化学习的自主导航 465
11.6 本章小结 467
第12章 典型自主导航系统
12.1 ros-navigation导航系统 470
12.1.1 原理分析 470
12.1.2 源码解读 475
12.1.3 安装与运行 479
12.1.4 路径规划改进 492
12.1.5 环境探索 496
12.2 riskrrt导航系统 498
12.3 autoware导航系统 499
12.4 导航系统面临的一些挑战 500
12.5 本章小结 500
第13章 机器人SLAM导航综合实战
13.1 运行机器人上的传感器 502
13.1.1 运行底盘的ROS驱动 503
13.1.2 运行激光雷达的ROS驱动 503
13.1.3 运行IMU的ROS驱动 504
13.1.4 运行相机的ROS驱动 504
13.1.5 运行底盘的urdf模型 505
13.1.6 传感器一键启动 506
13.2 运行SLAM建图功能 506
13.2.1 运行激光SLAM建图功能 507
13.2.2 运行视觉SLAM建图功能 508
13.2.3 运行激光与视觉联合建图功能 508
13.3 运行自主导航 509
13.4 基于自主导航的应用 510
13.5 本章小结 511
附录A Linux与SLAM性能优化的探讨
附录B 习题
本作品为”cnblogs@小虎哥哥爱学习"的原创文章,禁止任何形式的转载及抄录,侵权违法行为必究到底
posted @ 2019-02-17 22:15  小虎哥哥爱学习  阅读(5453)  评论(0编辑  收藏  举报