[安乐椅#18] 三角函数公式(不)大全
特殊角三角函数值
\(\sin{\dfrac{\pi}{12}}=\dfrac{\sqrt{6}-\sqrt{2}}{4} \space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{12}}=\dfrac{\sqrt{6}+\sqrt{2}}{4} \space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{12}}=2-\sqrt{3}\)
\(\sin{\dfrac{\pi}{8}}=\dfrac{\sqrt{2-\sqrt{2}}}{2} \space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{8}}=\dfrac{\sqrt{2+\sqrt{2}}}{2} \space\space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{8}}=\sqrt{2}-1\)
\(\sin{\dfrac{\pi}{6}}=\dfrac{1}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{6}}=\dfrac{\sqrt{3}}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{6}}=\dfrac{\sqrt{3}}{3}\)
\(\sin{\dfrac{\pi}{4}}=\dfrac{\sqrt{2}}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{4}}=\dfrac{\sqrt{2}}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{4}}=1\)
\(\sin{\dfrac{\pi}{3}}=\dfrac{\sqrt{3}}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{3}}=\dfrac{1}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{3}}=\sqrt{3}\)
\(\sin{\dfrac{3\pi}{8}}=\dfrac{\sqrt{2+\sqrt{2}}}{2} \space\space\space\space\space\space\space \cos{\dfrac{3\pi}{8}}=\dfrac{\sqrt{2-\sqrt{2}}}{2} \space\space\space\space\space\space\space \tan{\dfrac{3\pi}{8}}=\sqrt{2}+1\)
\(\sin{\dfrac{5\pi}{12}}=\dfrac{\sqrt{6}+\sqrt{2}}{4} \space\space\space\space\space\space\space\space \cos{\dfrac{5\pi}{12}}=\dfrac{\sqrt{6}-\sqrt{2}}{4} \space\space\space\space\space\space\space \tan{\dfrac{5\pi}{12}}=2+\sqrt{3}\)
\(\sin{\dfrac{\pi}{2}}=1 \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{2}}=0\)