Processing math: 4%

[安乐椅#18] 三角函数公式(不)大全

一言(ヒトコト)

花看半开 酒饮微醉

[安乐椅#18] 三角函数公式(不)大全

关注我

特殊角三角函数值

\sin{\dfrac{\pi}{12}}=\dfrac{\sqrt{6}-\sqrt{2}}{4} \space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{12}}=\dfrac{\sqrt{6}+\sqrt{2}}{4} \space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{12}}=2-\sqrt{3}

\sin{\dfrac{\pi}{8}}=\dfrac{\sqrt{2-\sqrt{2}}}{2} \space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{8}}=\dfrac{\sqrt{2+\sqrt{2}}}{2} \space\space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{8}}=\sqrt{2}-1

\sin{\dfrac{\pi}{6}}=\dfrac{1}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{6}}=\dfrac{\sqrt{3}}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{6}}=\dfrac{\sqrt{3}}{3}

\sin{\dfrac{\pi}{4}}=\dfrac{\sqrt{2}}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{4}}=\dfrac{\sqrt{2}}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{4}}=1

\sin{\dfrac{\pi}{3}}=\dfrac{\sqrt{3}}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{3}}=\dfrac{1}{2} \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \tan{\dfrac{\pi}{3}}=\sqrt{3}

\sin{\dfrac{3\pi}{8}}=\dfrac{\sqrt{2+\sqrt{2}}}{2} \space\space\space\space\space\space\space \cos{\dfrac{3\pi}{8}}=\dfrac{\sqrt{2-\sqrt{2}}}{2} \space\space\space\space\space\space\space \tan{\dfrac{3\pi}{8}}=\sqrt{2}+1

\sin{\dfrac{5\pi}{12}}=\dfrac{\sqrt{6}+\sqrt{2}}{4} \space\space\space\space\space\space\space\space \cos{\dfrac{5\pi}{12}}=\dfrac{\sqrt{6}-\sqrt{2}}{4} \space\space\space\space\space\space\space \tan{\dfrac{5\pi}{12}}=2+\sqrt{3}

\sin{\dfrac{\pi}{2}}=1 \space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space\space \cos{\dfrac{\pi}{2}}=0

辅助角公式

a\sin x+b \cos x=\sqrt{a^2+b^2}\sin(x+ \varphi)

\text{其中,}\cos{\varphi}=\dfrac{a}{\sqrt{a^2+b^2}},\space \sin{\varphi}=\dfrac{b}{\sqrt{a^2+b^2}}

和差化积

\sin\alpha+\sin\beta=2\sin\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2}

\sin\alpha-\sin\beta=2\cos\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2}

\cos\alpha+\cos\beta=2\cos\dfrac{\alpha+\beta}{2}\cos\dfrac{\alpha-\beta}{2}

\cos\alpha-\cos\beta=-2\sin\dfrac{\alpha+\beta}{2}\sin\dfrac{\alpha-\beta}{2}

\tan\alpha+\tan\beta=\dfrac{\sin{(\alpha+\beta)}}{\cos{\alpha}\cos{\beta}}

\tan\alpha-\tan\beta=\dfrac{\sin{(\alpha-\beta)}}{\cos{\alpha}\cos{\beta}}

\cot\alpha+\cot\beta=\dfrac{\sin{(\alpha+\beta)}}{\sin{\alpha}\sin{\beta}}

\cot\alpha-\cot\beta=-\dfrac{\sin{(\alpha-\beta)}}{\sin{\alpha}\sin{\beta}}

积化和差

\sin\alpha\cos\beta=\dfrac{1}{2}[\sin{(\alpha+\beta)}+\sin{(\alpha-\beta)}]

\cos\alpha\sin\beta=\dfrac{1}{2}[\sin{(\alpha+\beta)}-\sin{(\alpha-\beta)}]

\cos\alpha\cos\beta=\dfrac{1}{2}[\cos{(\alpha+\beta)}+\cos{(\alpha-\beta)}]

\sin\alpha\sin\beta=-\dfrac{1}{2}[\cos{(\alpha+\beta)}-\cos{(\alpha-\beta)}]

posted @   Gokix  阅读(73)  评论(0)    收藏  举报
相关博文:
阅读排行:
· 重磅消息,微软宣布 VS Code Copilot 开源,剑指 Cursor!
· .NET 的全新低延时高吞吐自适应 GC - Satori GC
· 高效缓存的10条军规
· 【译】Visual Studio 2022 v17.14 现已正式发布!
· 会用 AI 的工程师,效率已经拉开差距了 - “ 我们曾经引以为傲的编码能力,正在被改写。”

This blog has running: 1082 days 23 hours 38 minutes 25 seconds

点击右上角即可分享
微信分享提示