摘要: https://shop422165264.taobao.com/ 阅读全文
posted @ 2025-01-26 23:11 iMath 阅读(94) 评论(0) 推荐(0)
摘要: 乐影音下载器11.3(2024-3-9)能下载视频网站上面的视频,点击查看支持的视频网站。 你只需要复制视频网址就能自动帮你下载视频,也可以配合插件下载视频,方法请看视频。 软件下载: 下载地址① 下载地址② 浏览器插件下载: 下载地址① 下载地址② 下载网页里正在播放的音视频?也可以使用音视频下载 阅读全文
posted @ 2019-07-01 18:24 iMath 阅读(115401) 评论(0) 推荐(0)
摘要: 能下载网页里正在播放的音视频文件的软件,包括网易云音乐、虾米音乐、酷我音乐、百度音乐、一听音乐、喜马拉雅FM、企鹅FM、豆瓣FM、荔枝FM 阅读全文
posted @ 2017-11-05 13:33 iMath 阅读(190265) 评论(0) 推荐(0)
摘要: 众所周知,国外的大模型API国内一般用不了,所以我自己搭建了一个节点。 只要把原来的base_url的协议部分去掉,然后和https://mathjoy.eu.org/apigateway/拼接就可以用了,比如: https://mathjoy.eu.org/apigateway/generativ 阅读全文
posted @ 2025-09-02 17:42 iMath 阅读(32) 评论(0) 推荐(0)
摘要: 阅读全文
posted @ 2025-03-08 21:34 iMath 阅读(65) 评论(0) 推荐(0)
摘要: The calculus method for calculating the curvilinear area is to divide the shape into many narrow rectangles, sum their areas, and then take the limit 阅读全文
posted @ 2025-03-08 21:15 iMath 阅读(48) 评论(0) 推荐(0)
摘要: 假如说有一个人要从0这个点走到1这个点,显然他首先需要走完这段距离的一半,然后再走完剩余距离的一半,不断按照这种分法分下去前方就有无穷多的分段要走,他怎么可能走得完这无穷多的分段呢?所以他永远无法从0这个点走到1。 [1]为了进一步准确表达这个问题的本质,描述里的“这个人”或“他”都可以换成几何上的 阅读全文
posted @ 2025-02-11 15:18 iMath 阅读(171) 评论(0) 推荐(0)
摘要: 美团门票度假商家新订单目前没有短信微信邮件提醒功能,因此就开发了一个售卖 阅读全文
posted @ 2025-01-25 22:35 iMath 阅读(123) 评论(0) 推荐(0)
摘要: 学习高数,可以自学,也可以找人辅导。自学的话只看一本书很难行得通,碰到问题常常要查阅多本才能解决,其进度显然比不上找到有水准的人辅导那么快,我就是自学出来的,深知其中的艰辛,我当初前后失败了两三次才找到了有效的学习途径,具体可见我写的《高等数学和数学分析教材推荐及其学习方法浅谈》一文,即便找到了学习 阅读全文
posted @ 2024-07-10 15:12 iMath 阅读(224) 评论(0) 推荐(0)
摘要: →点击前往下载软件← 用户QQ群:656365129 阅读全文
posted @ 2024-06-08 16:11 iMath 阅读(140) 评论(0) 推荐(0)
摘要: 阅读全文
posted @ 2024-02-12 22:23 iMath 阅读(61) 评论(0) 推荐(0)
摘要: It is illustrated by the figure that the set of the rational numbers is not a continuum, there are holes in it, one question is how many points are in 阅读全文
posted @ 2023-02-24 15:44 iMath 阅读(198) 评论(0) 推荐(0)
摘要: 2025年10月28日前购买的可多赠送几天用到2025年12月04日 付费版解除了每天下载6个视频的限制,爱奇艺视频目前无法下载,但是对于你已经购买了的其它网站的付费课程,那么倒是可能下载的,付费版比免费版增加了这些网站的免费视频下载:淘宝教育视频、中国大学MOOC、文都教育、1905电影网、咪咕视 阅读全文
posted @ 2023-02-16 21:34 iMath 阅读(3879) 评论(0) 推荐(0)
摘要: 2025年10月28日前购买的可多赠送几天用到2025年12月04日 免费版音视频下载插件每天最多可下载5次,付费版无此限制!软件开发始终要投入"时间和精力"=金钱,长期无偿免费付出少有人愿意,请考虑购买本软件来支持它持续为你服务。 有担心的用户可以通过淘宝APP扫码购买: https://item 阅读全文
posted @ 2023-02-16 21:33 iMath 阅读(640) 评论(0) 推荐(0)
摘要: 对于数列极限定义 1,其中我们着重来看$\lim_{n \rightarrow \infty}\mspace{2mu} a_{n} = a$,这是大多数教材通常采用的对极限现象的符号代表形式,为了进一步了解极限的性质及其计算极限就有必要建立起极限的四则运算法则。如下便是利用极限的lim符号表示形式对 阅读全文
posted @ 2022-12-12 10:08 iMath 阅读(497) 评论(0) 推荐(0)
摘要: 对于极限四则运算法则的描述,首先让我们来看“数学分析教程,第二版,常庚哲,史济怀,p15”的描述: 再看“数学分析,第二版,陈纪修,於崇华,金路,p42”的描述: 有没有发现什么错误呢? 极限除法法则实际上说的是数列$\frac{a_{n}}{b_{n}}$和数列$a_{n}$与$b_{n}$的极限 阅读全文
posted @ 2022-12-09 10:32 iMath 阅读(820) 评论(0) 推荐(0)
摘要: 阅读全文
posted @ 2022-09-09 17:11 iMath 阅读(130) 评论(0) 推荐(0)
摘要: 圆的面积函数是 \[S(r) = \pi r^{2}\] 周长函数是 \[C(r) = 2\pi r\] 这二者的关系可以通过导数联系起来 \[S^{'}(r) = \left( \pi r^{2} \right)^{'} = 2\pi r = C(r)\] 简而言之就是圆的面积的导数等于周长,为什 阅读全文
posted @ 2022-08-23 09:27 iMath 阅读(2117) 评论(0) 推荐(0)
摘要: 对于\(\sin\frac{1}{x}\),当\(x\)从0的右侧附近逐渐靠近0时,\(\frac{1}{x}\)的变化是非常大的,比如当\(x\)由\(\frac{1}{10}\)变小到\(\frac{1}{100}\),仅仅是\(\frac{9}{100} = \mathrm{\Delta}x 阅读全文
posted @ 2022-07-15 11:41 iMath 阅读(4291) 评论(0) 推荐(0)
摘要: First, it is necessary to introduce the following definitions1, The function is said to be increasing at \(x_{0}\) if for all \(x\)-values in some int 阅读全文
posted @ 2022-05-15 11:13 iMath 阅读(252) 评论(0) 推荐(0)
摘要: 阅读全文
posted @ 2022-03-29 13:57 iMath 阅读(984) 评论(0) 推荐(0)
摘要: 本文发布于2021-06-27,2024-9-20再次修订。 极限,比如说数列极限,简单讲来说的是“当n越来越大时,数列\({\{ a}_{n}\}\)越来越靠近实数L”,是一种动态过程,而其正式定义,也称为数列极限的(ε, N)定义,却是这么描述:设 \(\left\{ a_{n} \right\ 阅读全文
posted @ 2021-06-27 16:22 iMath 阅读(1826) 评论(0) 推荐(0)
摘要: Python、PyQt打包成exe文件(非单独exe文件制作),如图所示pyinstaller打包不成功,或出现类似于这种错误信息Fatal Error detected: Failed to execute script pyi_rth_multiprocessing、Fail to execut 阅读全文
posted @ 2020-08-22 20:34 iMath 阅读(1736) 评论(0) 推荐(0)
摘要: 前几个月头脑里产生了这个想法: 毕达哥拉斯学派在发现无理数那一刻之前使用的是有理数,那么毕达哥拉斯定理(勾股定理)那时候也就可以看作是在有理数集内成立的定理,但是发现无理数的那位(名叫Hippassus of Metapontum)在不确定两直角边为1的直角三角形的斜边长度是不是有理数来的情况下,就 阅读全文
posted @ 2020-07-10 10:57 iMath 阅读(1269) 评论(0) 推荐(0)
摘要: 用极限(定积分)计算坐标系上曲线的平均高度 阅读全文
posted @ 2020-06-21 15:27 iMath 阅读(1826) 评论(0) 推荐(0)
摘要: 各位可付费找我定制Python工具软件或网站开发、Chrome插件、油猴脚本、自动化软件、按键精灵,可通过我做的软件来评判我的实力,一定要先和我沟通你的需求(最好图文并茂地写个Word文档详细说明你的需求是什么),做不了的我也不会接。 费用80元起,通过淘宝APP或其旗下的闲鱼APP扫码付费交易。 阅读全文
posted @ 2020-06-17 23:13 iMath 阅读(775) 评论(0) 推荐(0)
摘要: 如上图所示,在[a,b]上取n+1个不同的点\(x_{i}\),即 \(a = x_{0} < x_{1} < x_{2} < \cdots < {x_{i - 1} < x}_{i} < \cdots < x_{n} = b\) (其中\(i = 1,2,\ldots,n\)) 那么[a,b]就被 阅读全文
posted @ 2020-05-29 20:21 iMath 阅读(4161) 评论(0) 推荐(0)
摘要: 下载:①官方下载 ②谷歌浏览器商店 浏览器里开太多标签了很不方便?LessTabs可以把当前或全部标签关闭并送入一个新建的同名标签文件夹中。 点击插件图标查看所有功能; 如果打开LessTabs标签文件夹包含的标签或网址,LessTabs会将其自动移除; 建议登陆浏览器并云同步标签,这样就不会丢失保 阅读全文
posted @ 2019-11-09 11:08 iMath 阅读(1423) 评论(0) 推荐(0)
摘要: 在很多教材里\(\int_{}^{}{f(x){dx}}\)都被定义成是\(f(x)\)的所有原函数的集合,如《数学分析教程》,第二版,常庚哲,史济怀,p228: 既然\(\int_{}^{}{f(x){dx}}\)是一个集合,那么根据定义来看应该有 \[\int f(x)\,dx = \{F(x) 阅读全文
posted @ 2019-09-02 20:08 iMath 阅读(2782) 评论(0) 推荐(0)
摘要: 林群院士这个演讲让我感觉很推心置腹,推荐大家看看。我赞同其中的很多观点,故摘录并补充一些于下,希望对诸君有所助益。 他(丘成桐)经常告诫学生,“要学好微积分和线性代数,归根结底一切高级的数学都是微积分和线性代数的各种变化。” 我们的教科书把简单的东西讲得很复杂。能够通过一个案例说清楚的,不讲案例,却 阅读全文
posted @ 2019-08-22 17:41 iMath 阅读(3214) 评论(0) 推荐(0)
摘要: 本文会介绍关于英酷词典的如下两方面内容: 制作单词表并导入Anki 词典管理 词典格式 制作单词表并导入Anki 这里除了英酷词典外还要用到另外一个软件——Anki,这是个非常棒的助记软件,它可以帮助我们很有效地记忆很多知识点,这里用它来记单词,我觉得它最大的优点就是可以督促我们完成几乎每一天的记忆 阅读全文
posted @ 2019-05-28 11:26 iMath 阅读(1997) 评论(0) 推荐(0)
摘要: 本文会解答几个洛必达法则证明过程中的问题,同时也力求提供可以理解掌握的、能从中吸取到有用经验的∞/∞型洛必达法则的证明方法。 0/0型洛必达法则1(L’Hospital’s Rule: 0/0 case):在区间(a, b)上,f(x)和g(x)都可导、g′(x) ≠ 0、limx → a+f(x) 阅读全文
posted @ 2019-03-02 15:56 iMath 阅读(33400) 评论(0) 推荐(3)
摘要: 如果一个处处可导的函数的图像和一条水平直线交于不同的两点(如图所示), 那么在这两点间的函数图像上至少存在一点处的切线平行于该水平直线(显然也平行于x轴),这种现象可以更严谨地表述为罗尔定理(Rolle’s Theorem[1]):如果函数f(x)在[a,b]上连续,(a,b) 上可导,并且f(a) 阅读全文
posted @ 2018-12-21 19:59 iMath 阅读(10423) 评论(0) 推荐(0)
摘要: 不管哪个科目的教材选择,一旦决定要学我总试图找一本较好的来,次一点的我也懒得花时间精力投入在上面——这就是我的完美主义情节!当我进入大学想自学高等数学时,我也同样试图去找一本较好的教材。 刚找的时候,网上很多人推荐同济大学的那本高等数学书,说是好多学校都在用,又因为同济大学在国内也算是名牌,基于这两 阅读全文
posted @ 2018-10-18 15:22 iMath 阅读(94596) 评论(2) 推荐(1)
摘要: 谷歌浏览器不容易装插件,推荐使用百分浏览器代替。 下载后打开浏览器的插件安装页(QQ浏览器请在地址栏输入 qqbrowser://extensions/manage 后转到) 把插件拖放到上一步打开的插件安装页,可能要等待两三秒才会有反应,接下来你安装就是啦 安装后请按照下面的方法使用,各位可以打开 阅读全文
posted @ 2018-09-13 16:14 iMath 阅读(11505) 评论(0) 推荐(0)
摘要: 英酷词典,助力你的英文阅读和单词记忆! 软件下载: 下载地址1 主要功能 : 碰到不会的单词?鼠标点击一下就可以看到释义——哪里不会点哪里,so easy!复制选中的句子或段落之后也可以自动翻译。 常用问答AI如DeepSeek、豆包、ChatGPT、Gemini等等的常驻独立窗口——即方便用于AI 阅读全文
posted @ 2018-06-25 10:45 iMath 阅读(6941) 评论(0) 推荐(0)
摘要: 1、 在图标上鼠标右键 2、 点击“选项” 3、 输入VIP用户名(付费后请找我要) 4、 点击“核实一下” 有问题可加QQ群809639449咨询 阅读全文
posted @ 2018-05-22 20:51 iMath 阅读(1698) 评论(0) 推荐(0)
摘要: 那么一般的曲线的切线该怎么定义呢?且看下文! \(P(x_{0},y_{0})\)和\(Q(x_{0} + \Delta x,y_{0} + \Delta y)\)分别是上图曲线上不同的两点(这意味着\(\Delta x \neq 0\)),Q可以选在P的右边也可以选在左边(这意味着\(\text{ 阅读全文
posted @ 2018-05-13 10:08 iMath 阅读(31568) 评论(0) 推荐(0)
摘要: 为什么要求瞬时速度? 不清楚为什么要算瞬时速度而去求瞬时速度显得很可笑,所以这是一个首先必须搞清楚的问题。在此举例说明:如果一个骑摩托车的人突然撞上一棵树,撞树那一瞬间的速度(瞬时速度)可以决定他的生死;当一颗子弹打中目标的时,子弹碰到目标时的速度(瞬时速度)决定了子弹的杀伤力。所以,研究瞬时速度是 阅读全文
posted @ 2018-04-17 15:00 iMath 阅读(4555) 评论(0) 推荐(0)
摘要: 如果你不知道Linux为何物,那么请回去选择前两种下载方式之一。 只提供Linux 64位的乐影音下载器(点击下载),在Linux Mint 19.1 64位、Python 3.6环境下测试能正常运行。下载解压后打开LYYDownloader就可以运行了,然后你只需要复制视频网址就能自动帮你下载视频 阅读全文
posted @ 2018-02-23 13:25 iMath 阅读(3868) 评论(2) 推荐(0)
摘要: 本文第一版发布于2018年1月10日,第四次修订于2021年12月24日。 看完本文后你至少会明白如下几个关键问题: 无理数最初来源于几何上的发现,那为什么不采用几何的方式来定义无理数呢?是什么原因使得康托(Georg Cantor)和戴德金(Richard Dedekind)的无理数或实数定义都不 阅读全文
posted @ 2018-01-10 10:09 iMath 阅读(18414) 评论(0) 推荐(1)
关于我和本博客(iMath.cnblogs.com)