Loading

摘要: 广义积分习题课————计算下列广义积分的值 1 \[ \int_0^{+\infty} \frac{dx}{(1+5x^2)\sqrt{1+x^2}} \xlongequal{x=\tan t} \int_0^{\frac{\pi}{2}} \frac{\sec t dt}{1+5\tan^2 t} 阅读全文
posted @ 2021-12-13 16:22 nekko 阅读(841) 评论(0) 推荐(0)
摘要: 计算:\(\int_{-1}^{1}\frac{x^{2020}+1}{2020^x+1}dx\) 考虑:\(\int_{-a}^{a} f(x)dx=\int_0^{a}f(x)dx+\int_{-a}^{0}f(x)dx=\int_0^a[f(x)+f(-x)]dx\) \[ \int_{-1} 阅读全文
posted @ 2021-12-08 13:54 nekko 阅读(19) 评论(0) 推荐(0)
摘要: 1 设切于 \((x_0,\ln x_0)\),则 \(l:y=\frac{1}{x_0}(x-x_0)+\ln x_0(2 \le x_0 \le 6)\) \[ \begin{aligned} S=S(x_0)=&\int_2^6 \left(\frac{x-x_0}{x_0}+\ln x_0- 阅读全文
posted @ 2021-12-06 18:21 nekko 阅读(165) 评论(0) 推荐(0)
摘要: 已知:\(f_0=0,f_1=1,f_n=f_{n-1}+f_{n-2} (n \ge 2)\) 求 \(f_n\) 构造转移矩阵: \[ \begin{aligned} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} f_{ 阅读全文
posted @ 2021-12-04 15:01 nekko 阅读(68) 评论(0) 推荐(0)
摘要: 若 \(f(x) \in C[0,\pi]\),求证:\(\lim_{n \to \infty}\int_0^\pi f(x)|\sin nx|dx=\frac{2}{\pi}\int_0^\pi f(x)dx\) \[ \begin{aligned} \int_0^\pi f(x) |\sin n 阅读全文
posted @ 2021-11-30 08:53 nekko 阅读(38) 评论(0) 推荐(0)
摘要: 计算:\(\int_0^\pi \sin^6x\cos^2xdx\) 首先有: \[ \int \sin^6x\cos^2 x dx=\int (\sin^6x-\sin^8x)dx \\ \] 其次: \[ \begin{aligned} I_n =&\int \sin^ndx \\ =&-\in 阅读全文
posted @ 2021-11-28 13:01 nekko 阅读(82) 评论(0) 推荐(0)
摘要: 设 \(f(x) \in C[0,\pi]\),且 \(\int_0^\pi f(x)dx=0,\int_0^\pi f(x)\cos xdx=0\) 求证:\(\exists \zeta_1,\zeta_2 \in (0,\pi),\zeta_1 \ne \zeta_2,s.t.f(\zeta_1 阅读全文
posted @ 2021-11-27 12:14 nekko 阅读(168) 评论(0) 推荐(0)
摘要: 比大小: \(I_1=\int_0^{\frac{\pi}{2}}\sin(\sin x)dx \\I_2=\int_0^{\frac{\pi}{2}}\cos(\sin x)dx\) \[ \begin{aligned} &\begin{cases} \sin x+\cos x \le \sqrt 阅读全文
posted @ 2021-11-27 11:16 nekko 阅读(79) 评论(0) 推荐(0)
摘要: 求:\(\int \sin^{n}dx\) \[ \begin{aligned} I_n =&\int \sin^ndx \\ =&-\int \sin^{n-1}d\cos x \\ =&-\sin^{n-1}x\cos x+\int \cos x(n-1)\sin^{n-2}\cos xdx \ 阅读全文
posted @ 2021-11-26 20:24 nekko 阅读(42) 评论(0) 推荐(0)
摘要: 设 \(f(x) \in C^{1}[a,b]\),且 \(f(a)=0\) 求证:\(\int_{a}^{b}f^2(x)dx \le \frac{(b-a)^2}{2}\int_a^b[f'(x)]^2dx\) \[ \begin{aligned} &\because f(x)=f(x)-f(a 阅读全文
posted @ 2021-11-26 09:19 nekko 阅读(35) 评论(0) 推荐(0)