微积分(A)随缘一题[28]
比大小:
\[I_1=\int_0^{\frac{\pi}{2}}\sin(\sin x)dx \\I_2=\int_0^{\frac{\pi}{2}}\cos(\sin x)dx \]
\[\begin{aligned}
&\begin{cases}
\sin x+\cos x \le \sqrt{2} < \frac{\pi}{2} \\
\sin x-\cos x \le \sqrt{2} < \frac{\pi}{2}
\end{cases} \\
\Rightarrow &\sin x < \frac{\pi}{2}-|\cos x| \\
\Rightarrow &\sin(\sin x) < \sin(\frac{\pi}{2}-|\cos x|)=\cos(\cos x) \\
\Rightarrow &I_1=\int_{0}^{\frac{\pi}{2}} \sin(\sin x)dx < \int_0^{\frac{\pi}{2}}\cos(\cos x)dx=\int_{0}^{\frac{\pi}{2}}\cos(\sin x)dx=I_2 \\
\end{aligned}
\]

浙公网安备 33010602011771号