摘要:
设 \(f(x) \in C[0,\pi]\),且 \(\int_0^\pi f(x)dx=0,\int_0^\pi f(x)\cos xdx=0\) 求证:\(\exists \zeta_1,\zeta_2 \in (0,\pi),\zeta_1 \ne \zeta_2,s.t.f(\zeta_1 阅读全文
posted @ 2021-11-27 12:14
nekko
阅读(168)
评论(0)
推荐(0)
摘要:
比大小: \(I_1=\int_0^{\frac{\pi}{2}}\sin(\sin x)dx \\I_2=\int_0^{\frac{\pi}{2}}\cos(\sin x)dx\) \[ \begin{aligned} &\begin{cases} \sin x+\cos x \le \sqrt 阅读全文
posted @ 2021-11-27 11:16
nekko
阅读(79)
评论(0)
推荐(0)

浙公网安备 33010602011771号