微积分(A)随缘一题[30]
计算:\(\int_0^\pi \sin^6x\cos^2xdx\)
首先有:
\[\int \sin^6x\cos^2 x dx=\int (\sin^6x-\sin^8x)dx \\
\]
其次:
\[\begin{aligned}
I_n
=&\int \sin^ndx \\
=&-\int \sin^{n-1}d\cos x \\
=&-\sin^{n-1}x\cos x+\int \cos x(n-1)\sin^{n-2}\cos xdx \\
=&-\sin^{n-1}x\cos x+(n-1)\int\sin^{n-2}(1-\sin^2 x)dx \\
=&-\sin^{n-1}x\cos x+(n-1)I_{n-2}-(n-1)I_{n} \\
I_n=&\frac{n-1}{n}I_{n-2}-\frac{1}{n}\sin^{n-1}x\cos x+C
\end{aligned}
\]
化简得:
\[\int (\sin^6x-\sin^8x)dx=I_6-I_8=I_6-(\frac{7}{8}I_6-\frac{\sin^7x\cos x}{8})=\frac{1}{8}I_6+\frac{\sin^7x\cos x}{8}
\]
同时有:
\[\begin{aligned}
&I_0=x+C_0 \\
&I_2=\frac{1}{2}I_0-\frac{\sin x\cos x}{2}=\frac{x-\sin x\cos x}{2}+C_2 \\
&I_4=\frac{3}{4}I_2-\frac{\sin^3x\cos x}{4}=\frac{3}{8}x-\frac{3}{8}\sin x\cos x-\frac{\sin^3x \cos x}{4}+C_4 \\
&I_6=\frac{5}{6}I_4-\frac{\sin^5x\cos x}{6}=\frac{5x}{16}-\frac{5(\sin x\cos x)}{16}-\frac{5(\sin^3x\cos x)}{24}-\frac{\sin^5 x\cos x}{6}+C_6
\end{aligned}
\]
代入原式:
\[\begin{aligned}
&\int _0^{\pi}\sin^6x\cos^2xdx=\left(\frac{1}{8}I_6+\frac{\sin^7x\cos x}{8}\right) \bigg|_0^{\pi} \\
= &
\left(
\frac{5}{128}x-\frac{5}{128}\sin x\cos x-\frac{5}{192}\sin ^3x\cos x-\frac{1}{48}\sin^5x\cos x+\frac{1}{8}\sin^7x\cos x
\right)\bigg|_0^{\pi} \\
=&\frac{5\pi}{128}
\end{aligned}
\]
实际上:
\[I_n \bigg|_0^\pi=\left(\frac{n-1}{n}I_{n-2}-\frac{1}{n}\sin^{n-1}x\cos x+C\right)\bigg|_0^\pi
=
\begin{cases}
\pi & \quad (n=0)\\
2 & \quad(n=1)\\
\frac{n-1}{n}I_{n-2} & \quad (n \ge 2)
\end{cases}
\]
所以:
\[\begin{cases}
I_{2n} \bigg|_0^{\pi}=\pi \cdot \frac{(2n-1)!!}{(2n)!!} \\
I_{2n+1}\bigg|_0^{\pi}=2 \cdot \frac{(2n)!!}{(2n+1)!!}
\end{cases}
\]
所以:
\[\begin{aligned}
&\int _0^{\pi}\sin^6x\cos^2xdx=\left(\frac{1}{8}I_6+\frac{\sin^7x\cos x}{8}\right) \bigg|_0^{\pi} \\
=&\frac{1}{8}\pi \cdot \frac{5!!}{6!!} & \\
=&\frac{5\pi}{128}
\end{aligned}
\]
实际上就是wallis公式?

浙公网安备 33010602011771号