微积分(A)随缘一题[27]
求:\(\int \sin^{n}dx\)
\[\begin{aligned}
I_n
=&\int \sin^ndx \\
=&-\int \sin^{n-1}d\cos x \\
=&-\sin^{n-1}x\cos x+\int \cos x(n-1)\sin^{n-2}\cos xdx \\
=&-\sin^{n-1}x\cos x+(n-1)\int\sin^{n-2}(1-\sin^2 x)dx \\
=&-\sin^{n-1}x\cos x+(n-1)I_{n-2}-(n-1)I_{n} \\
\end{aligned}
\]
\[I_n=\frac{n-1}{n}I_{n-2}-\frac{1}{n}\sin^{n-1}x\cos x+C
\]

浙公网安备 33010602011771号