Paper Reading 博客汇总
按照算法的类型对个人的 Paper Reading 博客进行汇总,涉及多个研究方向的论文将按照个人主观感觉的主要方向排列。
不平衡学习
- A Novel Model for Imbalanced Data Classification:一种新的不平衡数据分类模型,涉及:不平衡学习、重采样、代价敏感学习、集成学习,发表于 AAAI Conference on Artificial Intelligence(AAAI) 2020。
- Model-Based Synthetic Sampling for Imbalanced Data:基于模型的不平衡数据采样,涉及:不平衡学习、过采样、实例生成,发表于 IEEE Transactions on Knowledge and Data Engineering(TKDE)2020。
- A three-way decision ensemble method for imbalanced data oversampling:一种用于不平衡数据过采样的三向决策集成方法,不平衡学习、过采样、构造覆盖算法、集成学习,发表于 International Journal of Approximate Reasoning 2019。
- Ensemble of Classifiers based on Multiobjective Genetic Sampling for Imbalanced Data:基于多目标遗传采样的不平衡分类器集成,涉及:不平衡学习、重采样、多目标优化、集成学习,发表于 IEEE Transactions on Knowledge and Data Engineering(TKDE)2020。
- Self-paced Ensemble for Highly Imbalanced Massive Data Classification:用于高度不平衡海量数据分类的自定步速集成模型,涉及:不平衡学习、实例硬度、重采样、集成学习,发表于 IEEE International Conference on Data Engineering (ICDE) 2020。
- Exploratory Undersampling for Class-Imbalance Learning:一种不平衡学习的探索性欠采样方法,涉及:不平衡学习、集成学习、baseline 方法,发表于 IEEE Transactions on Systems Man Cybernetics-Systems 2009。
- A Re-Balancing Strategy for Class-Imbalanced Classification Based on Instance Difficulty:基于实例硬度再平衡的不平衡分类算法,涉及:不平衡学习(图像)、实例硬度、重采样,发表于 IEEE Conference on Computer Vision and Pattern Recognition(CVPR) 2022。
- DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data:融合深度学习和不平衡数据的 SMOTE,涉及:不平衡学习(图像)、过采样、实例生成,发表于 IEEE Transactions on Neural Networks and Learning Systems 2022。
- Hashing-Based Undersampling Ensemble for Imbalanced Pattern Classification Problems:基于哈希的欠采样不平衡分类集成模型,涉及:不平衡学习、Hash、欠采样、子空间,发表于 IEEE Transactions on Cybernetics 2022。
- Sample and feature selecting based ensemble learning for imbalanced problems:基于样本和特征选择的不平衡问题学习集成学习算法,涉及:不平衡学习、欠采样、特征选择,发表于 Applied Soft Computing 2021。
- Oversampling with Reliably Expanding Minority Class Regions for Imbalanced Data Learning:可靠的扩展少数类区域的过采样方法,涉及:不平衡学习、过采样、候选子区域,发表于 IEEE Transactions on Knowledge and Data Engineering(TKDE)2022。
- Imbalanced ensemble learning leveraging a novel data-level diversity metric:利用新的数据多样性度量指标的不平衡集成学习算法,涉及:不平衡学习、多样性度量、PBIL,发表于 Pattern Recognition 2025。
- Multi-class imbalance problem: A multi-objective solution:一种基于多目标的多分类不平衡问题的解决方案,涉及:多目标优化、类别和样本间距、重采样,发表于 Information Sciences 2024。
- Dynamic ensemble selection for multi-class imbalanced datasets:针对多分类不平衡数据集的动态集成选择算法,涉及:不平衡学习、多分类、动态集成选择,发表于 Information Sciences 2018。
- Mixed Bagging: A Novel Ensemble Learning Framework for Supervised Classification based on Instance Hardness:一种基于实例硬度的分类集成学习框架 Mixed Bagging,涉及:实例硬度、Bagging,发表于 IEEE International Conference on Data Mining(ICDM) 2018。
- Deep balanced cascade forest: An novel fault diagnosis method for data imbalance:一种针对数据不平衡故障诊断的深度平衡级联森林,涉及:不平衡学习、故障诊断、混合采样,发表于 ISA Transactions 2021。
- Multi-class Imbalance Classification Based on Data Distribution and Adaptive Weights:基于数据分布和自适应权重的多分类不平衡分类算法,涉及:不平衡学习、自适应样本权重、AdaBoost,发表于 IEEE Transactions on Knowledge and Data Engineering(TKDE)2024。
- Combined Cleaning and Resampling algorithm for multi-class imbalanced data with label noise:针对带有标签噪声的多分类不平衡数据的联合清洗和重采样算法,涉及:不平衡学习、过采样、多分类拆解,发表于:Knowledge-based systems 2020。
- Random Balance ensembles for multiclass imbalance learning:针对多分类不平衡学习的随机平衡集成学习算法,涉及:不平衡学习、Random Balance、多分类,发表于:Knowledge-based systems 2020。
- MDGP-forest: A novel deep forest for multi-class imbalanced learning based on multi-class disassembly and feature construction enhanced by genetic programming:MDGP-forest 一种基于遗传编程增强的多类降解和特征构造的多类不平衡学习深度森林,涉及:不平衡学习、特征构造,遗传规划,发表于Pattern Recognition 2026。
回归
- SMOTE for Regression:回归的 SMOTE,涉及:不平衡回归、重采样,发表于 Portuguese Conference on Artificial Intelligence (EPIA) 2013。
- SMOGN: a Pre-processing Approach for Imbalanced Regression:一种用于不平衡回归的预处理方法 SMOGN,涉及:不平衡回归、重采样、高斯噪声,发表于 Proceedings of Machine Learning Research (PMLR) 2017。
- Density‑based weighting for imbalanced regression:基于密度加权的不平衡回归算法,涉及:代价敏感学习、稀有度度量、神经网络,发表于 Machine Learning 2021。
- Pre-processing approaches for imbalanced distributions in regression:不平衡回归问题的预处理方法,涉及:不平衡回归、重采样,发表于 Neurocomputing 2019。
- imbalanced regression and extreme value prediction:不平衡回归和极端值预测,涉及:不平衡回归、非参数方法、评估指标涉及,发表于 Machine Learning 2020。
- Resampling strategies for imbalanced regression: a survey and empirical analysis:不平衡回归的重采样策略:调查与实证分析,涉及:不平衡学习、回归、重采样,发表于 Artificial Intelligence Review 2024。
决策树
- Interpretable Rule Discovery Through Bilevel Optimization of Split-Rules of Nonlinear Decision Trees:通过双重优化非线性决策树的分类规则的可解释规则发现,涉及:非线性决策树、GA、可解释,发表于 IEEE Transactions on Cybernetics 2021。
- FT4cip: A new functional tree for classification in class imbalance problems:一种用于不平衡问题的新的分类函数树,涉及:决策树、不平衡学习,发表于 Knowledge-based systems 2022。
- Tree in Tree: from Decision Trees to Decision Graphs:TnT 从决策树到决策图,涉及:决策图、可解释,发表于 NeurlPS 2021。
- PCTBagging: From inner ensembles to ensembles. A trade-off between discriminating capacity and interpretability:一种在分类能力和可解释性之间的权衡的集成算法 PCTBagging,涉及:合并树构建、Bagging、可解释性,发表于 Information Sciences 2022。
- Vanilla Gradient Descent for Oblique Decision Trees:斜决策树的寻常梯度下降,涉及:倾斜决策树、语义等价性,发表于 European Conference on Artificial Intelligence (ECAI) 2024。
- GradTree: Learning Axis-Aligned Decision Trees with Gradient Descent:GradTree——学习具有梯度下降的轴对齐决策树,涉及:倾斜决策树、稠密表示,发表于 The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)。
- Bivariate Decision Trees: Smaller, Interpretable, More Accurate:双变量决策树:更小、可解释、更准确,涉及:倾斜决策树、树交替优化,发表于 ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD) 2024。
- Symbolic Regression Enhanced Decision Trees for Classification Tasks:分类任务的符号回归增强决策树,涉及:倾斜决策树、符号回归,发表于 The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)。
决策森林
- Deep Forest:深度森林,涉及:集成学习、深度学习、随机森林,发表于 National Science Review 2018。
- Improving Deep Forest by Exploiting High-order Interactions:基于高阶特征交互的改进深度森林,涉及:深度森林、特征表示、特征选择,发表于 IEEE International Conference on Data Mining (ICDM) 2021。
- DBC-Forest: Deep forest with binning confidence screening:基于分桶的置信度筛选深度森林,涉及:深度森林、分桶、阈值选择,发表于 Neurocomputing 2022。
- Learning from Weak-Label Data: A Deep Forest Expedition:用于弱标签数据的深度森林,涉及:弱标签学习、深度森林,发表于 AAAI 2020。
- WCDForest: a weighted cascade deep forest model toward the classifcation tasks:一个用于分类任务的加权级联深度森林模型,涉及:深度森林、特征加权,发表于 Applied Intelligence 2023。
- BoostTree and BoostForest for Ensemble Learning:集成学习算法 BoostTree 和 BoostForest,涉及:集成学习、Boosting,发表于:IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 2023。
- CERT-DF: A Computing-Efficient and Robust Distributed Deep Forest Framework With Low Communication Overhead:CERT-DF:一种计算高效、健壮、低通信开销的分布式深林框架,涉及:分布式计算、深度森林,发表于 IEEE Transactions on Parallel and Distributed Systems(TPDS) 2023。
- Tri-objective optimization-based cascade ensemble pruning for deep forest:基于三目标优化的深度森林剪枝算法,涉及:森林剪枝、遗传算法、多目标优化,发表于 Pattern Recognition 2023。
- Cost-sensitive deep forest for price prediction:用于价格预测的代价敏感深度森林,涉及:价格预测、代价敏感学习、深度森林,发表于 Pattern Recognition 2020。
- GRANDE: Gradient-Based Decision Tree Ensembles:GRANDE:基于梯度的决策树集成,涉及:倾斜决策树、神经决策树集成,发表于 The Twelfth International Conference on Learning Representations(ICLR 2024)。
进化计算
- An Evolutionary Forest for Regression:一种回归的进化森林,涉及:GP、特征构建、回归随机森林,发表于 IEEE Transactions on Evolutionary Computation 2021。
- PS-Tree: A piecewise symbolic regression tree:一个分段符号回归树,涉及:GP、子空间、多目标优化,发表于 Swarm and Evolutionary Computation 2022。
- Multitree Genetic Programming With New Operators for Transfer Learning in Symbolic Regression With Incomplete Data:用于不完全数据符号回归的新算子多树 GP 迁移学习算法,涉及:多树 GP、不完全符号回归、迁移学习,发表于 IEEE Transactions on Evolutionary Computation 2022。
- Genetic programming for multiple-feature construction on high-dimensional classification:基于遗传规划的高维分类问题的多特征构建,涉及:特征构造、遗传规划 GP、信息增益,发表于 Pattern Recognition 2019。
计算机视觉
- Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold:拖动你的 GAN:基于点的交互式生成图像流操作,涉及:GAN、图像编辑,发表于 ACM Special Interest Group on Computer Graphics(SIGGRAPH) 2023。
- Neural Prototype Trees for Interpretable Fine-grained Image Recognition:用于可解释细粒度图像识别的神经原型树,涉及:原型学习、神经决策树,发表于 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021。
计算学习理论与方法
- Relating instance hardness to classifcation performance in a dataset: a visual approach:将实例硬度与数据集中的分类性能相关联:一种可视化方法,涉及:实例空间分析、实例硬度、可视化,发表于:Machine Learning 2022。
神经决策模型
- NBDT: Neural-Backed Decision Trees:神经支持决策树,涉及:神经决策树、可解释,发表于 International Conference on Learning Representations(ICLR) 2021。
- Adaptive Neural Trees:自适应神经树,涉及:神经网络、决策树、子空间,发表于 International Conference on Machine Learning (ICML) 2019。
- Gradient Boosted Neural Decision Forest:梯度提升的神经决策森林,涉及:神经决策森林、梯度提升,发表于 IEEE Transactions on Services Computing 2021。
- A Survey of Neural Trees: Co-Evolving Neural Networks and Decision Trees:神经树综述:协同进化神经网络和决策树,涉及:神经决策树、可解释,发表于 IEEE Transactions on Neural Networks and Learning Systems(TNNLS)2024。
- DOFEN:Deep Oblivious Forest ENsemble:深度无意识森林集成,涉及:无意识决策树、松弛化、深度集成,发表于 dvances in Neural Information Processing Systems 37 (NeurIPS 2024)。
神经网络
- Neural random subspace:神经随机子空间,涉及:子空间、神经网络,发表于 Pattern Recognition 2020。
- ProtoGate: Prototype-based Neural Networks with Global-to-local Feature Selection for Tabular Biomedical Data:ProtoGate——基于原型的神经网络,用于表格生物医学数据的全局到局部特征选择,涉及:特征选择、生物信息数据、非参数估计,发表于 The 41st International Conference on Machine Learning (ICML 2024)。
- TabNet: Attentive Interpretable Tabular Learning:专注的可解释表格学习模型 TabNet,涉及:神经网络的表格学习、特征转换、自监督学习,发表于 The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)。
生物信息
- forgeNet: a graph deep neural network model using tree-based ensemble classifiers for feature graph construction:一种基于树的集成分类器构建特征图的图深度神经网络模型,涉及:生物信息网络、随机森林、深度神经网络,发表于 Bioinformatics 2020。
- A hybrid deep forest-based method for predicting synergistic drug combinations:一种基于混合深度森林的联合用药组合预测方法,涉及:联合用药、深度森林、不平衡学习、可解释,发表于 Cell Reports Methods 2023。
图学习
- Deep forest auto-Encoder for resource-Centric attributes graph embedding:面向资源中心属性图嵌入的深度森林自动编码器,涉及:图嵌入、autoencoder、深度森林,发表于 Pattern Recognition 2023。
- Cooperative Graph Neural Networks:协作图神经网络,涉及:GNN、消息传递,发表于 International Conference on Machine Learning(ICML) 2024。
特征工程
- Gradient Boosted Feature Selection:梯度提升特征选择,涉及:特征选择、梯度提升、Capped L1,发表于 ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD) 2014。
- ControlBurn-Feature Selection by Sparse Forests:基于稀疏森林的特征选择,涉及:稀疏森林、特征选择、LASSO,发表于 ACM SIGKDD Conference on Knowledge Discovery and Data Mining(KDD) 2021。
- XRRF: An eXplainable Reasonably Randomised Forest algorithm for classification and regression problems:一种用于分类和回归问题的可解释合理随机森林算法,涉及:图算法、特征选择、随机森林,发表于 Information Sciences 2022。
- A pareto-based ensemble of feature selection algorithms :一种基于帕累托优化的集成特征选择算法,涉及:帕累托优化、集成特征选择,发表于 Expert Systems with Applications 2021。
- OpenFE: Automated Feature Generation with Expert-level Performance:具有专家级性能的自动特征生成框架 OpenFE,理论分析部分见:理论分析部分,涉及:特征构造、expand-and-reduce、特征选择,发表于 International Conference on Machine Learning(ICML) 2023。
- AutoLearn-Automated Feature Generation and Selection:自动特征生成和选择算法 AutoLearn,涉及:特征构造、岭回归、信息增益,发表于:International Conference on Data Mining(ICDM) 2017。
- SAFE: Scalable Automatic Feature Engineering Framework for Industrial Tasks:用于工业任务的可扩展自动特征工程框架 SAFE,涉及:特征构造、特征重要性,发表于 IEEE International Conference on Data Engineering(ICDE) 2020。

浙公网安备 33010602011771号