随笔分类 - 思维
摘要:洛谷传送门 AtCoder 传送门 比较有意思的小清新题。 第一步是时光倒流,看成是每次经过一条未被访问过的边才染色。 奇偶相关容易想到二分图。发现若有一个黑白交替的奇环(即从一个点开始遍历完整个环得到的颜色序列是黑白交替地),那我们可以先染完这个环。又因为它是奇环,所以我们遍历一遍这个环就可以切换
阅读全文
摘要:洛谷传送门 考虑 \(d = 2\) 的部分分。相当于只用 \(2\) 次操作把 \(T\) 变成一条链。 不妨设最后变成的是一个 \(1 \sim n\) 的链,如果不是可以把点重编号。 第一次操作考虑以 \(n\) 为根,每次取每个儿子的子树中的最大值为新的根并和原来的根连边,这样会将整棵树具有
阅读全文
摘要:洛谷传送门 AtCoder 传送门 下文令 \(m\) 为原题面的 \(k\)。 题目条件很奇怪,考虑有没有什么比较好用的策略。 发现对于任意一个三元组 \((a, b, c)\),其中 \(a, b, c\) 不全相等,那么同时添加 \((a, b, c), (b, c, a), (c, a, b
阅读全文
摘要:洛谷传送门 AtCoder 传送门 不妨考虑最后的结果可以成为哪些 \(a_i\) 的组合。为了方便分析,我们令 \(a_i = 2^{i - 1}\)。 进行一次操作后,所有 \(\text{popcount}(a_i)\) 都为偶数。所以一个 \(x \in [0, 2^n - 1]\) 能被生
阅读全文
摘要:洛谷传送门 CF 传送门 感觉是这场唯一比较有趣的题? 首先明确一点:先手只会选 \(2\) 个数,因为数多了 \(\gcd\) 会变小,而且对方的 \(\text{and}\) 会变大。 所以对于某一位,若 \(0\) 的个数 \(\ge 3\) 那么对方的按位与这一位一定是 \(0\)。 所以若
阅读全文
摘要:洛谷传送门 AtCoder 传送门 考虑对于一个确定的串怎么判断合法性。 容易发现删到某个时刻若 \(1\) 的个数大于 \(0\) 的个数了,因为我们肯定不会蠢到在不是全 \(1\) 的时候删 \(111\),所以 \(c_1 - c_0\) 在不是全 \(1\) 的时候至少是不会变小的。 所以我
阅读全文
摘要:洛谷传送门 AtCoder 传送门 讲个笑话,一年前做过,今天模拟赛出了,但是完全不记得,然后想了一种完全不同的方法,我真抽象。 首先考虑什么时候有解。显然 \(m = n + f(a)\) 的时候有解,令 \(b_i = i, c_i = a_i\) 即可。然后考虑任意交换一对 \((i, j)\
阅读全文
摘要:洛谷传送门 CF 传送门 首先环是不用管的,只用判环长是否为 \(3\) 的倍数即可。 考虑设 \(f(x, y, z)\) 表示 \(x\) 个 \(1\) 链,\(y\) 个 \(2\) 链,\(z\) 个 \(0\) 链,组成所有环长都为 \(3\) 的倍数的方案数。 注意到 \(f(x, y
阅读全文
摘要:洛谷传送门 CF 传送门 可以把限制看成 \(0.75n^2\)。发现 \(0.75n^2 = 0.5n^2 + 2 \times 0.5 (\frac{n}{2})^2\)。这启发我们询问一次 \([1, n]\) 和两次长度为 \(\frac{n}{2}\) 的区间。 不妨问 \([1, n],
阅读全文
摘要:洛谷传送门 WC2024 被打爆了,呜呜。我赛时会这题 \(8\) 分指数级暴力,哈哈。真不知道自己在干嘛。 下文令 \(T = 2L\)。 考虑如何判定一个序列 \(a\) 是否合法。考虑先枚举一个 \(T\)。因为要求 \(r_i < r_{i + 1}\),考虑讨论相邻两项的取值: 若 \(a
阅读全文
摘要:洛谷传送门 LOJ 传送门 非常有趣的结论题。 首先显然,整个图不是二分图就无解。 然后显然每个连通块独立,可以分连通块判定。 然后发现一度点是没什么用的,因为无论和它相连的点颜色是什么,它都能找到一种和这种颜色不同的颜色。所以考虑类似拓扑排序剥一度点。剩下的图的 \(deg_u \ge 2\)。
阅读全文
摘要:洛谷传送门 CF 传送门 放放/ll/ll/ll。 这题是个性质题。 首先第一排一定是升序,第二排一定是降序。考虑第一排若存在 \(i < j\) 使得 \(a_{1, i} > a_{1, j}\),那么交换这两个数不会变劣。第二排类似。 然后发现在 \(1\) 走下去或在 \(n\) 走下去最优
阅读全文
摘要:洛谷传送门 CF 传送门 对这种题一点办法都没有。。。 可以手动折叠发现 \(n = 3\) 时 \(M = 2 + 2 \sqrt{2}, V = 2 + 4 \sqrt{2}\)。于是大胆猜结论,第二次折叠开始,每次产生的山谷和山峰的长度相等。 为什么呢?考虑从第二次折叠开始,设当前纸的层数为
阅读全文
摘要:洛谷传送门 CF 传送门 首先显然每个点双独立,所以不同点双构造后直接合并即可。下面只考虑图点双连通的情况。 发现一个环显然有解。一个环加一条边也有解(例如 \((1, 2), (2, 3), (3, 4), (4, 1), (1, 3)\))。 发现一个环连出去一条链再连回来就无解(例如 \((1
阅读全文
摘要:洛谷传送门 LOJ 传送门 模拟赛赛时被这题题面唬住了,没想到原来这么简单/ll。 设第 \(i\) 个位置经过变化后的位置为 \(p_i\)。那么连边 \(i \to p_i\) 后所有环长的 \(\text{lcm}\) 为 \(K\)。 考虑先构造一组数 \(\{a_n\}\) 使得 \(\t
阅读全文
摘要:洛谷传送门 CF 传送门 orz Charlie/bx. 考虑对棋盘染色,那么马移动到的格子和原来的格子异色。 进而发现若两个马初始异色,那么只有白马可以吃黑马,否则只有黑马可以吃白马。 下面只讨论初始异色的情况,同色是对称的。下文令 \(W, B, T_W, T_B\) 分别为白马起点,黑马起点,
阅读全文
摘要:洛谷传送门 AtCoder 传送门 赛后调了 40min,哈哈。 首先先把 \(a, b\) 排序。 考虑先枚举 Alice 选的数 \(a_i\),然后若 \(\forall j, \exists k \ne i, (a_i, b_j, a_k)\) 能组成三角形,Alice 就赢了。 考虑简化条
阅读全文
摘要:洛谷传送门 CF 传送门 挺妙的。 接下来我们将构造一个每条边都染色的方案,所以原来的 \(w_i\) 没用。 极差 \(\le 2\) 这个条件比较谔谔。考虑拆点,把原图变成二分图,那么 \(u, u + n\) 的极差只要都 \(\le 1\),原图就满足条件。 但是现在还不是很好做。考虑继续拆
阅读全文
摘要:洛谷传送门 AtCoder 传送门 太厉害了!!!!!! 首先竞赛图有个性质,若存在环则一定存在三元环。 先把 DAG 的情况(一条链)特判了。然后缩点。发现非链底的部分不能存在大小 \(> 1\) 的 SCC。所以枚举非链底的部分有多少点,转化为 SCC 的情况。 发现对于任意点(设为 \(1\)
阅读全文
摘要:洛谷传送门 CF 传送门 做了好久。怎么会是呢。 题目的操作可以看成,求出一些关键字,使得 \(B\) 矩阵的行是由 \(A\) 按照这些第 \(1\) 关键字、第 \(2\) 关键字一直到第 \(k\) 关键字,最后还有一个原来所在行下标的关键字,从小到大排序。 肯定是从排好序的 \(B\) 矩阵
阅读全文

浙公网安备 33010602011771号