随笔分类 - 思维
摘要:洛谷传送门 CF 传送门 好厉害。 特判 \(k = 1\)。首先经过观察,我们可以按照 \(k\) 的奇偶性讨论: \(k\) 为偶数,有一个中心点挂了若干条长度为 \(\frac{k}{2}\) 的链。 \(k\) 为偶数,有两个中心点,两边挂了若干条长度为 \(\frac{k}{2}\) 的链
阅读全文
摘要:洛谷传送门 CF 传送门 考虑构造一个新串 \(t\),只保留原串 \(s_{i - 1} = s_i\) 的字符 \(s_i\)。设 \(a_i\) 为 \(t_i\) 在原串的位置。 那么新串上我们有两种操作: \(\forall i\),删除 \(t_i\)(相当于删除原串中的 \([a_i,
阅读全文
摘要:洛谷传送门 CF 传送门 容易想到把 \(s, t\) 分成长度为 \(2\) 的段考虑。容易发现 \(00, 11\) 的个数在操作过程中不会改变,所以若两串的 \(00\) 或 \(11\) 个数不相等则无解。 考虑依次对 \(i = 2, 4, \ldots, n\) 构造 \(s[1 : i
阅读全文
摘要:洛谷传送门 CF 传送门 \(n\) 为偶数显然无解。 否则我们可以构造一棵 \(n\) 个点的完全二叉树,当 \(n + 1\) 是 \(2\) 的幂时满足 \(m = 0\),否则 \(m = 1\)。 当 \(n \ge 5\) 时可以递归至 \((n - 2, m - 1)\),再挂一个叶子
阅读全文
摘要:洛谷传送门 CF 传送门 考虑增量构造第一个集合。首先令 \(S = \{1\}\),然后不断找到下一个点 \(u\),使得它在抠掉 \(S\) 的图上不是割点,并且与 \(S\) 连通。然后令 \(S \gets S \cup \{u\}\)。 可以证明一定能找到这样的 \(u\)。 因为对于抠掉
阅读全文
摘要:洛谷传送门 AtCoder 传送门 貌似是第三道问号题?感觉前面这个转化不是人能想到的。。。 考虑维护 \(y\) 的差分序列。更进一步地,我们类比 slope trick,维护一个可重集,里面有 \(y_{i + 1} - y_i\) 个 \(i\)(为了方便我们让每次操作时 \(y_{m + 1
阅读全文
摘要:洛谷传送门 CF 传送门 \(2 \nmid k\) 显然无解。 若 \(4 \mid k\),发现给一个全 \(2 \times 2\) 子矩形全部异或 \(1\) 不会对行异或和和列异或和造成影响。那么我们找到 \(\frac{k}{4}\) 个全 \(0\) 的 \(2 \times 2\)
阅读全文
摘要:洛谷传送门 CF 传送门 考虑形式化地描述这个问题。先把 \(l\) 排序。然后相当于是否存在一个 \(\{1, 2, \ldots, n\}\) 的子集 \(S\),使得: \(\sum\limits_{i \in S} l_i = d\)。 \(\exists T \subseteq S, \m
阅读全文
摘要:洛谷传送门 CF 传送门 设最后每个数都相等时为 \(t\)。那么一次操作变成了合并两个数 \(x, y\),再增加 \(x + y - k\)。于是每个 \(a_i\) 可以被表示成 \(b_i t - (b_i - 1)k\) 的形式,化简得 \(a_i - k = b_i (t - k)\)。
阅读全文
摘要:洛谷传送门 CF 传送门 感觉这个题还是挺不错的。 考虑 F1。考察 \(a_i\) 差分后的意义,发现 \(a_i - a_{i - 1}\) 就是 \((\sum\limits_{j = 1}^{i - 1} [p_j = i]) + p_i \le i\)。 考虑将其转化为棋盘问题。在 \((
阅读全文
摘要:洛谷传送门 CF 传送门 考虑一条好的路径 \(x \to y\) 中一定至少存在一条边 \((u, v)\),满足这条边的序列 \(a\) 存在一个 \(j \in [1, |a| - 1]\),满足 \(a_j = u, a_{j + 1} = v\),就是说 \(a\) 包含一对相邻的 \((
阅读全文
摘要:QOJ 传送门 好题。 首先可以视为每一列 \(1\) 的个数 \(\ge a_i\),超出的最后再无视即可。 首先先不考虑构造。考虑二分 \(k\),考虑 Dilworth 定理,即询问是否有 \(k\) 条链覆盖所有的黑格。 可以调整使得第 \(i\) 条链的起点为 \((n - k + i,
阅读全文
摘要:洛谷传送门 QOJ 传送门 感觉很妙啊,应该不止蓝吧? 首先一个转化是每次建桥操作就相当于交换两条链的后半部分,可以看看扶苏那篇题解的图。 我们将每个点表示为形如 \((x, y)\) 的二元组表示它初始在第 \(x\) 行第 \(y\) 列,按 \(y\) 为键值排序,那么一次询问就是查询一条链的
阅读全文
摘要:洛谷传送门 CF 传送门 从套娃过来的。 首先考虑如何方便地描述所有子区间的 \(\text{mex}\)。这是一个经典套路,考虑扫描线,扫右端点 \(R\),维护一些极长的段 \([l, r]\) 表示 \([l, R], [l + 1, R], \ldots, [r, R]\) 的 \(\tex
阅读全文
摘要:洛谷传送门 CF 传送门 考虑加入第 \(n + 1\) 个位置,这样座位构成了一个环。每个位置被覆盖的概率相等,为 \(\frac{m}{n + 1}\),然后算出概率再乘方案数就行了。 code // Problem: D. Airplane Arrangements // Contest: C
阅读全文
摘要:洛谷传送门 CF 传送门 考虑暴力,就是对于一对满足 \(a_u < a_v\) 的边 \(u \to v\),如果任意一个区间包含 \([\min(u, v), \max(u, v)]\),就将 \(u \to v\) 加入 DAG,然后做 P6134 [JSOI2015] 最小表示,就是判断是否
阅读全文
摘要:洛谷传送门 CF 传送门 操作没有什么性质,唯一一个性质是,操作次数不超过 \(\log n\)(每次至多保留一半元素)。于是我们可以直接模拟操作。 但是肯定不能直接模拟。考虑先对原序列模拟一次,求出经过 \(i\) 次操作后保留的位置集合 \(S_i\)。那么只保留 \([l, r]\) 的元素,
阅读全文
摘要:洛谷传送门 CF 传送门 首先,如果我们确定了 \(1, 2\) 或 \(n - 1, n\) 的位置,我们就能求出原排列。因为题目给了 \(p_1 < p_2\),所以可以不考虑对称性。也就是说我们知道两个位置是 \(1, 2\) 或 \(n - 1, n\) 但不确定究竟是 \(1, 2\) 还
阅读全文
摘要:洛谷传送门 首先 \(x_1 = y_1\) 显然不合法。若 \(x_1 > y_1\) 就把 \(x, y\) 全部取相反数,这样就只用考虑 \(x_1 < y_1\) 的情况了。 然后考虑一个 \(O(nmq)\) 的 dp,设 \(f_{i, j}\) 为拓展 \(X\) 的前 \(i\) 个
阅读全文
摘要:洛谷传送门 AtCoder 传送门 喵喵题。 考虑若所有点权都已确定,如何求 \(1\) 到 \(n\) 所有路径权值和的 \(\gcd\)。 考虑如何 check 一个 \(x\) 是否合法。考虑拆点,把点权转成边权,在新图上连边 \(u \to u'\),边权 \(a_u\);\(u' \to
阅读全文

浙公网安备 33010602011771号