会员
周边
新闻
博问
闪存
众包
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
pp-orange
博客园
首页
新随笔
联系
订阅
管理
上一页
1
2
3
4
5
6
7
下一页
2025年5月30日
收获速记 0530
摘要: 一个厉害的问题。 给定 \(u,v,m,n\),求 \([x^n]\prod\limits_{i=0}^{m}\frac{1}{1-(ui+v)x}\),限制 \(m\le 2\times 10^5,n\le 10^{18}\)。 首先有一个比较慢的 \(O(n\log m\log n)\) 的线性
阅读全文
posted @ 2025-05-30 16:39 皮皮的橙子树
阅读(25)
评论(0)
推荐(0)
2025年5月12日
哈希模数
摘要: 309137 后 3 位任意交换都是质数 19937 后 3 位除了 19397 外都是质数。 998244353,998244853,1000000009
阅读全文
posted @ 2025-05-12 18:01 皮皮的橙子树
阅读(9)
评论(0)
推荐(0)
2025年3月20日
收获速记 0320
摘要: https://www.luogu.com.cn/problem/P9168 https://www.luogu.com.cn/problem/AT_abc363_g 实质上这两个问题都有单log做法
阅读全文
posted @ 2025-03-20 13:53 皮皮的橙子树
阅读(11)
评论(0)
推荐(0)
2025年3月19日
收获速记 0319
摘要: 关于杨表 https://mna.wang/contest/2433/problem/3 杨表。 记录一下式子吧, h(i,j) 是勾长 标准杨表是 n!/prod(h(i,j)) 半标准是 prod(n+j-i)/prod(h(i,j))(行内非严格递增,列内严格递增,所有数在 [1,n] 之间)
阅读全文
posted @ 2025-03-19 22:12 皮皮的橙子树
阅读(11)
评论(0)
推荐(0)
2025年3月14日
收获速记 0314
摘要: 完全背包: https://www.cnblogs.com/pp-orange/p/18762799 关于背包我们终于做到了!不过 fxt 论文写了一模一样的东西,但是自己发明也很有收获。 完全背包还有一个 n^2log 的分治做法,在只关心可达性的场景下配合FFT,可以解决钦定物品数量的题 这个分
阅读全文
posted @ 2025-03-14 20:18 皮皮的橙子树
阅读(14)
评论(0)
推荐(0)
2025年3月13日
通信trick
摘要: 多项式! 随机、哈希 https://uoj.ac/problem/178 https://vfleaking.blog.uoj.ac/blog/1244 不可多得的绝世好题,结合了多个通信trick,极其有用。
阅读全文
posted @ 2025-03-13 20:59 皮皮的橙子树
阅读(16)
评论(0)
推荐(0)
2025年3月11日
k 卷积背包要 mod 多少?
摘要: 问题是每个物品有 \(0,1,2,...,k-1\) k 种重量,对应 \(w_0,w_1...w_{k-1}\) \(k\) 种价值,有 若干个物品,求每个重量下的最大价值。(\(k\) 很小) https://www.cnblogs.com/pp-orange/p/18764088 这是 3 卷
阅读全文
posted @ 2025-03-11 17:02 皮皮的橙子树
阅读(25)
评论(0)
推荐(0)
三卷积背包奇偶凸性
摘要: 问题是每个物品有 \(0,1,2\) 三种重量,对应 \(w_0,w_1,w_2\) 三种价值,有 \(n(2\times 10^5)\) 个物品,求每个重量下的最大价值。 双卷积背包显然是上凸的,可以直接把物品权值排序即可。关于三卷积就没有这么好的性质,但是我们仍可以证明,它的奇数重量和偶数重量分
阅读全文
posted @ 2025-03-11 08:14 皮皮的橙子树
阅读(197)
评论(1)
推荐(2)
2025年3月10日
更快的完全背包算法
摘要: 考虑这样一个问题:我们有一个完全背包(每个物品有无限个),有 n 种物品,每个物品有两个属性 w,c,w(w<=n)表示重量,c表示权重,你要求大小恰好为 V 的背包的最大可能权重。 首先考虑这个问题的两个弱化: https://www.luogu.com.cn/problem/P2371 这个实质
阅读全文
posted @ 2025-03-10 15:32 皮皮的橙子树
阅读(23)
评论(0)
推荐(0)
收获速记 0310
摘要: 背包问题的非平凡进展 理解了背包加权的方式,可以解决可达性带边界,或者最大化不带边界。 AI's trick 关于整体二分的一个技巧,我们多次扫描,每次到 mid 询问,扫描 log 次 线性基的更优做法(数据结构) cxm指出可以用小测度随机的方式 有势能分析的思考方向。 https://mna.
阅读全文
posted @ 2025-03-10 11:00 皮皮的橙子树
阅读(5)
评论(0)
推荐(0)
上一页
1
2
3
4
5
6
7
下一页
公告