摘要:
Auto-Deep-Research https://github.com/HKUDS/Auto-Deep-Research "Your Fully-Automated Personal AI Assistant, and Open-Source & Cost-Efficient Alternati
阅读全文
posted @ 2025-06-22 00:01
lightsong
阅读(49)
推荐(0)
摘要:
local-full-stack-deep-research https://github.com/LearningCircuit/local-deep-research?tab=readme-ov-file Local Deep Research is an AI-powered assistan
阅读全文
posted @ 2025-06-21 22:59
lightsong
阅读(53)
推荐(0)
摘要:
deer-flow https://github.com/bytedance/deer-flow DeerFlow is a community-driven Deep Research framework, combining language models with tools like web
阅读全文
posted @ 2025-06-21 21:26
lightsong
阅读(139)
推荐(0)
摘要:
local-deep-researcher https://github.com/langchain-ai/local-deep-researcher Fully local web research and report writing assistant Local Deep Researche
阅读全文
posted @ 2025-06-21 17:52
lightsong
阅读(81)
推荐(0)
摘要:
OpenHands https://github.com/All-Hands-AI/OpenHands OpenHands: Code Less, Make More Welcome to OpenHands (formerly OpenDevin), a platform for software
阅读全文
posted @ 2025-06-21 14:45
lightsong
阅读(47)
推荐(0)
摘要:
langmanus https://github.com/Darwin-lfl/langmanus?tab=readme-ov-file#usage https://github.com/fanqingsong/langmanus A community-driven AI automation f
阅读全文
posted @ 2025-06-21 14:17
lightsong
阅读(67)
推荐(0)
摘要:
OpenManus https://github.com/mannaandpoem/OpenManus https://openmanus.github.io/ https://github.com/OpenManus/OpenManus-RL OpenManus-RL 🤗 Dataset (Op
阅读全文
posted @ 2025-06-16 22:47
lightsong
阅读(286)
推荐(0)
摘要:
Redroid https://zyhahaha.github.io/redroid.html https://deepwiki.com/remote-android/redroid-doc https://docs.radxa.com/rock5/rock5b/app-development/re
阅读全文
posted @ 2025-06-16 16:27
lightsong
阅读(257)
推荐(0)
摘要:
autoMate https://github.com/yuruotong1/autoMate/tree/master Redefining Your Relationship with Computers Unlike traditional RPA tools that are cumberso
阅读全文
posted @ 2025-06-14 10:41
lightsong
阅读(58)
推荐(0)
摘要:
Dify Agent vs Dify Workflow:一文看懂两种 AI 执行机制的差异与选型建议 https://www.zedyer.com/iot-knowledge/dify-agent-vs-dify-workflow/ 面向开发者与技术产品团队的实用指南:深入理解 Dify 中两种核心
阅读全文
posted @ 2025-06-13 22:46
lightsong
阅读(1683)
推荐(0)
摘要:
gpt-researcher https://github.com/assafelovic/gpt-researcher LLM based autonomous agent that conducts deep local and web research on any topic and gen
阅读全文
posted @ 2025-06-09 21:36
lightsong
阅读(48)
推荐(0)
摘要:
Open Deep Research https://github.com/langchain-ai/open_deep_research Open Deep Research is an experimental, fully open-source research assistant that
阅读全文
posted @ 2025-06-09 20:56
lightsong
阅读(191)
推荐(0)
摘要:
deep-searcher Open Source Deep Research Alternative to Reason and Search on Private Data. Written in Python. https://github.com/zilliztech/deep-search
阅读全文
posted @ 2025-06-09 20:42
lightsong
阅读(80)
推荐(0)
摘要:
Gemini Fullstack LangGraph Quickstart https://github.com/google-gemini/gemini-fullstack-langgraph-quickstart This project demonstrates a fullstack app
阅读全文
posted @ 2025-06-09 19:58
lightsong
阅读(388)
推荐(0)
摘要:
Authorization 为什么要有auth code https://www.cnblogs.com/blowing00/p/4524412.html 四大方式 https://www.ruanyifeng.com/blog/2019/04/oauth-grant-types.html 对于第一
阅读全文
posted @ 2025-06-04 15:06
lightsong
阅读(42)
推荐(0)
摘要:
host.docker.internal https://zhuanlan.zhihu.com/p/444263754 docker compose 里面的容器怎么访问主机自身起的服务呢? 20.10.0 版本在 linux 新增 host.docker.internal 支持: docker ru
阅读全文
posted @ 2025-06-02 22:42
lightsong
阅读(500)
推荐(0)
摘要:
ResearchSphere: End-to-End Document Research https://github.com/SaiPranaviJeedigunta/Multi-Agent-RAG-Application/tree/main Objective Build an end-to-e
阅读全文
posted @ 2025-05-26 15:57
lightsong
阅读(49)
推荐(0)
摘要:
multi-agent-RAG-pipeline https://github.com/Abs-cv/multi-agent-RAG-pipeline/tree/main multi-agent-RAG.ipynb Framework Using LangGraph # Multi-Agent Co
阅读全文
posted @ 2025-05-20 22:48
lightsong
阅读(78)
推荐(0)
摘要:
微软身份平台和 OAuth 2.0 授权代码流 https://learn.microsoft.com/zh-cn/entra/identity-platform/v2-oauth2-auth-code-flow https://learn.microsoft.com/en-us/entra/msa
阅读全文
posted @ 2025-05-20 09:58
lightsong
阅读(378)
推荐(0)
摘要:
Building an AI-Powered Registration System with LangGraph, FastAPI, and React https://medium.com/@phurlocker/building-an-ai-powered-registration-syste
阅读全文
posted @ 2025-05-11 19:13
lightsong
阅读(76)
推荐(0)
摘要:
pandas_rag_langgraph https://github.com/vbarda/pandas-rag-langgraph/blob/main/pandas_rag_langgraph/agent.py import re from typing import Annotated, It
阅读全文
posted @ 2025-04-28 23:01
lightsong
阅读(39)
推荐(0)
摘要:
【FastAPI】实现服务器向客户端发送SSE(Server-Sent Events)广播 https://blog.csdn.net/h1773655323/article/details/142254031 from fastapi import FastAPI, Request from fa
阅读全文
posted @ 2025-04-28 22:15
lightsong
阅读(281)
推荐(0)
摘要:
typing.Annotated https://docs.python.org/3/library/typing.html Special typing form to add context-specific metadata to an annotation. Add metadata x t
阅读全文
posted @ 2025-04-28 10:19
lightsong
阅读(114)
推荐(0)
摘要:
fastapi-azure-auth https://github.com/intility/fastapi-azure-auth At Intility we use FastAPI for both internal (single-tenant) and customer-facing (mu
阅读全文
posted @ 2025-04-27 23:29
lightsong
阅读(32)
推荐(0)
摘要:
LLM ROUTER https://github.com/johnsosoka/langgraph-model-router/tree/main from langgraph.graph import START, END, StateGraph from workflow.nodes impor
阅读全文
posted @ 2025-04-20 20:56
lightsong
阅读(61)
推荐(0)
摘要:
https://github.com/bekingcn/langgraph_swarm LangGraph Swarm The LangGraph Swarm is a alternative implementation to the OpenAI's Swarm framework with l
阅读全文
posted @ 2025-04-20 20:16
lightsong
阅读(106)
推荐(0)
摘要:
[Langgraph] Remove a message from the graph state https://github.com/langchain-ai/langchain/discussions/22632 def function_node2(state): updated_messa
阅读全文
posted @ 2025-04-20 16:30
lightsong
阅读(132)
推荐(0)
摘要:
docling vs markitdown 以下是 Docling 和 MarkItDown 两款文档转换工具的详细对比,基于功能、技术架构、适用场景等方面的综合分析: 1. 核心定位 Docling 由 IBM 开发,专注于 文档解析与结构化输出,强调与 AI 生态(如 LangChain、Lla
阅读全文
posted @ 2025-04-16 22:00
lightsong
阅读(604)
推荐(0)
摘要:
langgraph应用可以使用langserve部署吗 是的,LangGraph 应用可以通过 LangServe 部署! 如何部署 LangGraph 应用? 将 LangGraph 工作流封装为 RunnableLangGraph 的 Graph 或 StateGraph 可以编译为一个 Run
阅读全文
posted @ 2025-04-14 22:34
lightsong
阅读(1141)
推荐(0)
摘要:
Introducing ambient agents https://blog.langchain.dev/introducing-ambient-agents/ https://github.com/fanqingsong/executive-ai-assistant What is an amb
阅读全文
posted @ 2025-04-13 17:26
lightsong
阅读(47)
推荐(0)
摘要:
langgraph支持多用户并发吗? 是的,LangGraph 支持多用户并发,但其并发能力的具体表现取决于 运行时环境 和 底层架构设计。以下是关键点分析: 1. LangGraph 的并发机制 基于状态机的异步处理:LangGraph 的核心是通过异步状态机(StateGraph)管理任务流,理
阅读全文
posted @ 2025-04-13 16:03
lightsong
阅读(1097)
推荐(0)
摘要:
langgraph-email-automation https://github.com/fanqingsong/langgraph-email-automation Customer Support Email Automation with AI Agents and RAG 📩 FULL
阅读全文
posted @ 2025-04-13 15:56
lightsong
阅读(70)
推荐(0)
摘要:
Long-Term Agentic Memory with LangGraph https://saptak.in/writing/2025/03/23/mastering-long-term-agentic-memory-with-langgraph Imagine having a person
阅读全文
posted @ 2025-04-13 11:18
lightsong
阅读(225)
推荐(0)
摘要:
Long-Term Memory in AI Agents: A Structured Approach with LangMem https://medium.com/the-ai-forum/long-term-memory-in-ai-agents-a-structured-approach-
阅读全文
posted @ 2025-04-13 11:08
lightsong
阅读(65)
推荐(0)
摘要:
A Long-Term Memory Agent https://python.langchain.com/docs/versions/migrating_memory/long_term_memory_agent/ This tutorial shows how to implement an a
阅读全文
posted @ 2025-04-13 10:54
lightsong
阅读(66)
推荐(0)
摘要:
LangMem https://blog.langchain.dev/langmem-sdk-launch/ On memory and adaptive agents Agents use memory to learn, but the way their memories are formed
阅读全文
posted @ 2025-04-13 10:42
lightsong
阅读(236)
推荐(0)
摘要:
fastapi-file-management-service https://github.com/hanieas/fastapi-file-management-service Table of Contents Introduction Technology Stack and Feature
阅读全文
posted @ 2025-04-11 22:43
lightsong
阅读(109)
推荐(0)
摘要:
LLMCompiler https://langchain-ai.github.io/langgraph/tutorials/llm-compiler/LLMCompiler/ LLMCompiler is an agent architecture designed to speed up the
阅读全文
posted @ 2025-04-10 21:24
lightsong
阅读(38)
推荐(0)
摘要:
Filebrowser https://github.com/fanqingsong/filebrowser Dropbox-like file manager, that can be set up on any server. Demo 其它推荐 1. 轻量级/快速部署 FileBrowser
阅读全文
posted @ 2025-04-10 20:46
lightsong
阅读(285)
推荐(0)
摘要:
Agentic RAG https://langchain-ai.github.io/langgraph/tutorials/rag/langgraph_agentic_rag/ Retrieval Agents are useful when we want to make decisions a
阅读全文
posted @ 2025-04-09 23:03
lightsong
阅读(95)
推荐(0)