随笔分类 - 思维
摘要:[洛谷传送门](https://www.luogu.com.cn/problem/CF1827E "洛谷传送门") [CF 传送门](https://codeforces.com/problemset/problem/1827/E "CF 传送门") 比较神奇的题。 定一个非叶子 $r$ 为根。 显
阅读全文
摘要:[洛谷传送门](http://https://www.luogu.com.cn/problem/AT_arc139_c "洛谷传送门") [AtCoder 传送门](https://atcoder.jp/contests/arc139/tasks/arc139_c "AtCoder 传送门") ~~
阅读全文
摘要:[洛谷传送门](https://www.luogu.com.cn/problem/AT_arc132_d "洛谷传送门") [AtCoder 传送门](https://atcoder.jp/contests/arc132/tasks/arc132_d "AtCoder 传送门") 提供一个 dp 思
阅读全文
摘要:这题太神仙了吧!感觉还不是很懂,但是尽力理一下思路。 设 $t_x$ 为最大的 $j$ 使得 $i_j = x$,不存在则 $t_x = 0$。 设 $1 \sim n$ 的数按照 $t$ 从小到大排序后是 $p_1, p_2, ..., p_n$,设 $q_i$ 为 $i$ 在 $p$ 中的排名,
阅读全文
摘要:[洛谷传送门](https://www.luogu.com.cn/problem/AT_arc130_c "洛谷传送门") [AtCoder 传送门](https://atcoder.jp/contests/arc130/tasks/arc130_c "AtCoder 传送门") 分类讨论,但是写起
阅读全文
摘要:[洛谷传送门](https://www.luogu.com.cn/problem/AT_arc133_e "洛谷传送门") [AtCoder 传送门](https://atcoder.jp/contests/arc133/tasks/arc133_e "AtCoder 传送门") 其实是套路题,但是
阅读全文
摘要:[洛谷传送门](https://www.luogu.com.cn/problem/CF1832D2 "洛谷传送门") [CF 传送门](https://codeforces.com/contest/1832/problem/D2 "CF 传送门") 首先,如果一个点变成蓝色,在下一次立刻把它变成红色
阅读全文
摘要:洛谷传送门 AtCoder 传送门 感觉挺高妙的…… 为了方便,不妨把横纵坐标都整体减 $1$。 如果单独考虑上下移动,方案数是 $\binom{2n}{n}$。发现两个人上下总共移动 $n$ 次后一定会在同一行,设这行编号为 $x$,那么最后带个 $\binom{n}{x}^2$ 的系数,并且除掉
阅读全文
摘要:洛谷传送门 注意到如果 $n$ 足够小,可以过 $n^2$。选 $x = 3$(这样做的好处是能交换两个相邻元素),每次把值为 $i$ 的元素挪到 $i$,注意到我们不关心其他元素,所以翻转 $[l, r]$ 的效果可以看成是交换 $p_l, p_r$。于是先跳大步,再跳小步。可以过 $n \le
阅读全文
摘要:洛谷传送门 AtCoder 传送门 显然,选出的每两个点都要组成一条直径。 进一步发现,设直径点数为 $x$,如果 $x \nmid 2$,所有直径都会在中点重合,否则会在连接两个中点的边重合。简单证一下,如果有两条直径不在中点或中边重合,那么: 它们不可能不重合,要不然就不会成为直径了; 它们在除
阅读全文
摘要:洛谷传送门 AtCoder 传送门 技巧性比较强的题(? 设 $a$ 为最优解的 $A$,则 $a$ 可以贪心构造,就是每一位都取到下界。 考虑设 $b_i = \frac{a_i}{i}$,因为 $i \times b_i < (i + 1) \times b_{i+1}$,则 $b_{i+1}
阅读全文
摘要:洛谷传送门 AtCoder 传送门 It's all MAGIC 这种题目一般先考虑局面要满足什么条件能必胜,然后根据这个性质来计数。 如果把黑板上的数写成一个集合 $S$,那么: $\varnothing$ 为必胜态,${1}, {2}$ 显然为必败态,打表发现其他单元素集合都为必胜态; 如果 $
阅读全文
摘要:洛谷传送门 AtCoder 传送门 不难猜想有解充要条件为 $n \ge 5$ 且 $\frac{n(n-1)}{2} \bmod 3 = 0$。 发现如果钦定一个点的出边都为同一种颜色,那么条件 $2$ 一定满足。 那么题目等价于把 ${0,1,...,n-1}$ 分成 $3$ 组使得每组的和相等
阅读全文
摘要:洛谷传送门 AtCoder 传送门 观察可以发现: 使每支箭的距离都为 $D$ 一定不劣; 每支箭坐标一定为整数; 设最左边的箭坐标为 $x$,那么 $x$ 太小时可以把最左边的箭移到最右边,$x$ 太大时可以把最右边的箭移到最左边。计算可得 $x$ 的最优取值范围为 $x \in [-\left\
阅读全文
摘要:洛谷传送门 AtCoder 传送门 考虑判断有无解。把序列分成 $c = \left\lceil\frac{len}{k}\right\rceil$ 段,则 $\forall a_i \le c$ 且 $\sum\limits_{i=1}^n [a_i = c] \le ((len - 1) \bm
阅读全文
摘要:洛谷传送门 AtCoder 传送门 我一年前甚至不会做/qd 发现 $a_{x_1}$ 为 $k = \min\limits_{i=1}^n a_i$ 时最优。然后开始分类讨论: 如果 $\min\limits_{a_i = k} a_{i+n} \le k$,答案为 $(k, \min\limit
阅读全文
摘要:洛谷传送门 AtCoder 传送门 很典但是并不会做…… 设 $s_i = \oplus_{i=0}^n i$,所求即为: $$\sum\limits_{l=L-1}^R \sum\limits_{r=l+1}^R [s_l \oplus s_r = V]$$ 考虑把它化成下界相同的形式,即求: $
阅读全文
摘要:洛谷传送门 AtCoder 传送门 考虑把所有 $a_i = a_{i+1}$ 的位置断开,分别计算然后把方案数乘起来。接下来的讨论假设 $a_i \ne a_{i+1}$。 考虑一个 dp,设 $f_i$ 为 $[1,i]$ 最后剩下的集合的方案数。转移显然是 $f_i \gets f_i + f
阅读全文
摘要:洛谷传送门 AtCoder 传送门 首先将度数 $-1$。 设 $f_i$ 为体积为 $i$ 至多能用几个物品凑出来,$g_i$ 为至少。 我们现在要证明一个东西:$x \in [g_i, f_i]$,$(i, x)$ 合法。 首先若 $(s, x)$ 合法,那么必须满足 $s - x \in [-
阅读全文
摘要:洛谷传送门 AtCoder 传送门 很厉害的题! 考虑所有车站已确定,如何求 $0$ 到 $n+1$ 的最短路。设 $g_{i,0}$ 为只考虑 $0 \sim i$ 的点,到 $i$ 和它左边第一个 $\text{A}$ 的最短路,$g_{i,1}$ 同理。有转移: 若 $s_{i-1} = \t
阅读全文

浙公网安备 33010602011771号