随笔分类 - 自主招生
自主招生,高考压轴题,浙江省数学竞赛或高中数学联赛一试相应难度的竞赛题.
摘要:设$a,b,c$是正数,且$(a+b)(b+c)(c+a)=8$,证明不等式:$\frac{a+b+c}{3}≥[\frac{a^3+b^3+c^3}{3}]^{\frac{1}{27}}$评:记住一些常见的三元恒等变换是重要的,这里的27次是“假27次”.
阅读全文
摘要:提示:都是看$a,b$前的系数做的$a=4/3,b=2/3;a+b=\le2$,一样的可以求得$a+b$的最小值-1,当$b=\frac{1}{3},a=\frac{-4}{3}$时取到等号.此题是清北某一年自主招生题.
阅读全文
摘要:评:根据$b,c$前系数凑配系数,也是比较常见的思路.
阅读全文
摘要:注:最后一行中$f(\dfrac{-x_1}{2})$应改为$f(\dfrac{-a}{2})$.有空再重新编辑。
阅读全文
摘要:评:空间余弦定理:空间四边形$ABCD$中$cos=\frac{|(|AB|^2+|CD|^2)-(|BC|^2+|AD|^2)}{2|AC||BD|}$,证明用向量.
阅读全文
摘要:评:已知对棱的距离以及此对棱边长,夹角就可以求出该三棱锥的体积.这把三棱锥的放到平行六面体里的做法是非常常见的。
阅读全文
摘要:分析:此类题一般有两种做法,第一种按解答题做法,第二种作为填空题找对应的特殊函数,比如这里可以根据三角里和差化积得出$f(x)=\frac{1}{2}cos(\frac{\pi}{3}x)$
阅读全文
摘要:分析:这里只需要注意到$(|x|+|y|)_{max}=max\{|x+y|,|x-y|\}$,所以只需求$max\{|20a|,|14b|\}$进而变成熟悉的反解系数问题。容易知道最大值为$a=2,b=-1$时候取到40.
阅读全文
摘要:评:这类与正整数有关的题,是很多学生所不习惯以及无从下手的。事实上很多时候要用到整数的这个性质:$m>n,m,n\in Z$则$m\ge n+1$,这道题用二次函数区间上有根的一般做法也可以,大致是这样:
阅读全文
摘要:分析:此类题还是比较常见的,左右都有不等式,中间夹着一个式子,我们可以找个$x$使得中间式子满足的条件显示出来.类似的方法可以用在这道浙江高考文科压轴题上
阅读全文
摘要:评:对于(3)几何上来看要满足性质$P$图像来看必须下凸。这样区间中点$x=2$处不可能为最大.(4)的形式让我想起在证明算术几何平均不等式时历史上著名的柯西反向归纳证明:
阅读全文
摘要:解答: 评:这题实质上是对关于$x$的三次函数进行了一个因式分解.这种把$a$看成主元的技巧是初中处理高次的因式分解的常用技巧.如果用三次求导去做计算量比较大,要计算极值.
阅读全文
摘要:提示:$f(f(f(x)-lnx)-ln(f(x)-lnx))=1+e=f(f(x)-lnx),\because f(x)$单调.得: $f(f(x)-lnx)-ln(f(x)-lnx)=f(x)-lnx$,可以解出$f(x)=ln(x)+e$
阅读全文
摘要:评:一般这个题目是先考虑$x$的存在性,再考虑$t$的任意性。最后按照动区间定轴类型处理,考虑区间和对称轴的相对位置.
阅读全文
摘要:答案:D.比如C 中令$x^2+1=2,x=-1,1,$ 得$f(2)=0,2$与定义矛盾,A,B同理排除. D中注意到$x^2-2x$与$|x-1|$对称轴都是$x=1$。 评:函数的定义,首先是两个非空数集$A,B$之间的关系 $f$. 这个关系 $f$ 要求满足以下条件: $\forall x
阅读全文

浙公网安备 33010602011771号