12 2023 档案
摘要:伯努利不等式应用 已知函数\(f(x)=(1+x)^m-mx-1,x>-1,m>0\)且\(m\neq 1\) \((1)\) 讨论\(f(x)\)单调性 \((2)\) 若\(\forall x\in\left(0,\dfrac{\pi}{2}\right)\cup \left(\dfrac{\p
        阅读全文
                
摘要:简单构造,考察眼睛 x^2-a\ln x+(1-a)x+1$ \((1)\) 讨论函数的单调性 \((2)\) 当\(a=1\)时,证明:\(f(x)\leq x(e^x-1)+\dfrac{1}{2}x^2-2\ln x\) 解 \((1)\) \(f^{\prime}(x)=x-\dfrac{a
        阅读全文
                
摘要:一道放缩(很丑陋) 已知函数\(f(x)=\ln(x+1)-\lambda x+\dfrac{x^2}{2}(x>0)\) \((1)\) 若\(f(x)>0\)求\(\lambda\)的取值范围 \((2)\)证明:\(2\ln(n+1)-\dfrac{33}{20}<\displaystyle\
        阅读全文
                
摘要:重要放缩与观察配凑数列 函数\(f(x)=a\ln x+\dfrac{1}{2}x^2-(a+1)x+\dfrac{3}{2}(a>0)\) \((1)\)求函数单调区间 \((2)\)当\(a=1\)时,\(f(x_1)+f(x_2)=0\)证明:\(x_1+x_2\geq 2\) \((3)\)
        阅读全文
                
摘要:用一道经典开始 已知双曲线:\(\Gamma:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1(a>0,b>0)\),渐近线方程为\(x\pm2y=0\)点\(\left(2,\sqrt{2}\right)\)在\(\Gamma\)上 \((1)\)求双曲线\(\Gamma\)
        阅读全文
                
摘要:很难的放缩:对数均值不等式 已知函数\(f(x)=-2x-2\sin x+2m\ln x,m>0\)若存在\(f(x_1)=f(x_2)(x_1\neq x_2)\) \((1)\)判断\(2(x-\sin x)\)的单调性 \((2)\)证明:\(x_1+x_2>1+\ln m\) 解 \((1)
        阅读全文
                
摘要:含参问题常用三种思想 已知函数\(f(x)=ax\ln x-x+1\),若\(x\in(1,+\infty)\)时,\(f(x)>0\),求\(a\)的取值范围 解 法一:直接讨论 \(f^{\prime}(x)=a(\ln x+1)-1\),\(f^{\prime}(x)\)为增函数,并且\(f^
        阅读全文
                
摘要:放缩与必要性探路(端点效应) 已知函数\(f(x)=-\dfrac{x^2}{e^x}+(b-1)x+a\)在\(x=0\)处的切线与\(y\)轴垂直. 证明:\(\forall x\in[0,+\infty)\),不等式\(2[e^xf(x)-\cos x]>\ln(1+x)\)恒成立,求实数\(
        阅读全文
                
摘要:极值点偏移:对数均值不等式 已知\(a\in\mathbb{R}\),函数\(f(x)=\dfrac{a}{x}+\ln x,g(x)=ax-\ln x-2\).若\(f(x_1)=f(x_2)=2(x_1\neq x_2)\) (1)求出\(a\)的取值范围 (2)证明:\(\dfrac{1}{x
        阅读全文
                
摘要:越复杂越简单,构造问题 已知函数\(f(x)=(\ln x-2x+a)\ln x\) \((1)\)当\(a=2\)时,求\(f(x)\)的单调性 \((2)\)若\(f(x)\leq\dfrac{e^x}{x}-x^2+ax-a\),求实数\(a\)的取值范围. 解 \((1)\) \(a=2,f
        阅读全文
                
摘要:一道常规的求参 已知函数\(f(x)=e^x-1\) \((1)\) 若\(g(x)=f(x)-ax\),讨论\(g(x)\)的单调性 \((2)\)当\(x>0\)时,都有\((x-k-1)f(x)+x+1>0\)成立,求整数\(k\)的最大值 解 \((1)\) \(g(x)=e^x-1-ax\
        阅读全文
                
摘要:再来点简单的 已知函数\(f(x)=e^x\cos x\) \((1)\)求\(f(x)\)的单调区间 \((2)\) \(F(x)=-f^{\prime}(x)-ax\)在\(\left(\dfrac{\pi}{2},\pi\right)\)上有两个极值点,求实数\(a\)的取值范围. 解 \((
        阅读全文
                
摘要:来个简单的 已知函数\(f(x)=2a\ln x-x+\dfrac{1}{x}\) \((1)\) 若\(\forall x\in [1,+\infty),f(x)\leq 0\),求\(a\)的取值范围. \((2)\)证明:\(\forall a\in (1,+\infty),\forall x
        阅读全文
                
摘要:指对分离:\(x\ln x,xe^x\),下界大于上界 已知函数\(f(x)=\dfrac{ae^{x-1}}{x}+e(\ln x-x),a\in\mathbb{R}\) \((1)\)若\(f(x)\)在\((1.+\infty)\)上单调递增,求\(a\)的取值范围 \((2)\)当\(a\g
        阅读全文
                
摘要:不同角度解决双变量问题 已知函数\(f(x)=x\ln x-\dfrac{1}{2}ax^2-x(a\in\mathbb{R})\) \((1)\) 若函数\(f(x)\)在\(\left[\dfrac{1}{e},+\infty\right)\)上为增函数,求实数\(a\)的最大值; \((2)\
        阅读全文
                
摘要:多变量问题转化成单变量问题 设\(a\in \mathbb{R}\),函数\(f(x)=x^2e^{1-x}-a(x-1)\) \((1)\)当\(a=1\)时,求\(f(x)\)在\(\left(\dfrac{3}{4},2\right)\)内的极值 \((2)\)设函数\(g(x)=f(x)+a
        阅读全文
                
摘要:观察放缩 已知函数\(f(x)=\dfrac{\sin x}{e^x}\) \((1)\) 求函数\(f(x)\)在\((0,3)\)上的单调区间 \((2)\) 若\(x>0\)时,\(f(x)\leq a\ln (x+1)\),求实数\(a\)的取值范围 解 \((1)\) \(f^{\prim
        阅读全文
                
摘要:找出相同结构 设函数\(f\left(x\right)=\mathrm{e}^x-1-ax\). \((1)\) 若\(x\geq0\),\(f\left(x\right)\geq0\),求\(a\)的取值范围; \((2)\)若\(x>0\)且\(m\geq1\),证明:\(f\left(x\ri
        阅读全文
                
摘要:常规的双变量问题与隐零点 已知函数\(f(x)=\dfrac{1}{2}x^2+a\ln x-4x(a>0)\) \((1)a=3\)时,讨论\(f(x)\)单调性 \((2)\) 设\(f(x)\)有两个极值点\(x_1,x_2(x_1<x_2),\)证明\(f(x_1)+f(x_2)>\ln a
        阅读全文
                
摘要:新颖地利用切线拟合零点 已知函数\(f(x)=\ln x+ax(a\in\mathbb{R})\) (1)讨论函数\(y=f(x)-a\)的零点个数 (2)若\(a>-1\)且函数\(y=f(x)-a\)有两个零点\(x_1,x_2\)证明:\(|x_1-x_2|<\left(\dfrac{2}{a
        阅读全文
                
摘要:双变量问题中参数的处理 已知函数\(f(x)=ae^x-\dfrac{1}{2}x^2+a\)有两个不同的极值点\(x_1,x_2(x_1<x_2)\) \((1)\) 求\(a\)的取值范围 \((2)\) 已知\(m>0,\)且\(x_1+mx_2>m+1\),求\(m\)的取值范围. 解 \(
        阅读全文
                
摘要:保号性应用 已知函数\(f(x)=e^x-mx\) (1)讨论\(f(x)\)单调性 (2)若\(f(x)\geq (a-m)x-\sin x+1,\forall x>0\)恒成立,求\(a\)的取值范围 解. \((1)\) 当\(m\leq 0\)时,\(f(x)\)为单调递增 当\(m>0\)
        阅读全文
                
摘要:(2020理科数学20)已知\(A,B\)为椭圆\(E:\dfrac{x^2}{a^2}+y^2=1(a>1)\)的左右顶点,\(G\)为\(E\)上的上顶点,\(\overrightarrow{AG}\cdot\overrightarrow{GB}=8,P\)为直线\(x=6\)上的动点,\(PA
        阅读全文
                
摘要:已知函数\(f(x)=(x+2)\ln x,g(x)=x^2+(3-a)x+2(1-a)\) (1)若不等式\(f(x)\leq g(x)\)在\(x\in(-2,+\infty)\)上恒成立,求\(a\)取值范围. (2)证明:\(\displaystyle \prod\limits_{k=1}^
        阅读全文
                
摘要:已知函数\(f\left(x\right)=\left(x+1\right)\ln x-ax+a\left(a\in \mathbb{R}\right)\) (1) 若\(a=2\),试判断\(f\left(x\right)\)的单调性,并证明你的结论 (2) 设\(0<a\le1\),求证:\(\
        阅读全文
                
摘要:22.函数\(f(x)=\lg(a\cdot9^x+3^x-1)\) (1)如果\(x\in(1,2)\)有意义,求实数\(a\)的取值范围 (2)当\(a\leq 0\)时,\(f(x)\)的值域为\(\mathbb{R}\),求实数\(a\)的取值范围 (3)在\((2)\)的条件下,\(g(x
        阅读全文
                
 
                    
                
 浙公网安备 33010602011771号
浙公网安备 33010602011771号