每日导数1

保号性应用

已知函数\(f(x)=e^x-mx\)

(1)讨论\(f(x)\)单调性

(2)若\(f(x)\geq (a-m)x-\sin x+1,\forall x>0\)恒成立,求\(a\)的取值范围

解.

\((1)\)\(m\leq 0\)时,\(f(x)\)为单调递增

\(m>0\)时,\(f^{\prime}(x)=e^x-m=0\)\(x_0=\ln m\)

\(f(x)\)\((0,x_0)\)单调递减,\((x_0,+\infty)\)单调递增.

\((2)\)\(f(x)\geq (a-m)x-\sin x+1,\forall x>0\)恒成立

\(e^x-ax+\sin x-1\geq 0\)恒成立

\(\varphi(x)=e^x-ax+\sin x-1,\varphi^{\prime}(x)=e^x-a+\cos x\)

不难发现\(\varphi(0)=0,\varphi^{\prime}(0)=2-a\)

\(2-a< 0\)\(a> 2\)

由保号性知存在\(m\)使得
\(x\in(0,m)\)\(\varphi^{\prime}(x)<0\)

又因\(\varphi(0)=0\) 则在\(x\in(0,x_0)\)\(\varphi(x)<0\)不合题!

\(a\leq 2\)时,\(\varphi^{\prime\prime}(x)=e^x-\sin x>0\)

\(\varphi^{\prime}(x)\)单调递增,则\(\varphi^{\prime}(x)>\varphi^{\prime}(0)=2-a>0\)

\(\varphi(x)\)单调递增,即\(\varphi(x)\geq \varphi(0)=0 \square\)

综上\(a\leq 2\)

posted @ 2023-12-06 09:31  会飞的鱼13  阅读(45)  评论(0)    收藏  举报