每日导数1
保号性应用
已知函数\(f(x)=e^x-mx\)
(1)讨论\(f(x)\)单调性
(2)若\(f(x)\geq (a-m)x-\sin x+1,\forall x>0\)恒成立,求\(a\)的取值范围
解.
\((1)\) 当\(m\leq 0\)时,\(f(x)\)为单调递增
当\(m>0\)时,\(f^{\prime}(x)=e^x-m=0\)得\(x_0=\ln m\)
则\(f(x)\)在\((0,x_0)\)单调递减,\((x_0,+\infty)\)单调递增.
\((2)\) 若\(f(x)\geq (a-m)x-\sin x+1,\forall x>0\)恒成立
则\(e^x-ax+\sin x-1\geq 0\)恒成立
记\(\varphi(x)=e^x-ax+\sin x-1,\varphi^{\prime}(x)=e^x-a+\cos x\)
不难发现\(\varphi(0)=0,\varphi^{\prime}(0)=2-a\)
若\(2-a< 0\)即 \(a> 2\)时
由保号性知存在\(m\)使得
\(x\in(0,m)\)有\(\varphi^{\prime}(x)<0\)
又因\(\varphi(0)=0\) 则在\(x\in(0,x_0)\)上\(\varphi(x)<0\)不合题!
当\(a\leq 2\)时,\(\varphi^{\prime\prime}(x)=e^x-\sin x>0\)
即\(\varphi^{\prime}(x)\)单调递增,则\(\varphi^{\prime}(x)>\varphi^{\prime}(0)=2-a>0\)
即\(\varphi(x)\)单调递增,即\(\varphi(x)\geq \varphi(0)=0 \square\)
综上\(a\leq 2\)

浙公网安备 33010602011771号