每日导数2

双变量问题中参数的处理

已知函数\(f(x)=ae^x-\dfrac{1}{2}x^2+a\)有两个不同的极值点\(x_1,x_2(x_1<x_2)\)

\((1)\)\(a\)的取值范围

\((2)\) 已知\(m>0,\)\(x_1+mx_2>m+1\),求\(m\)的取值范围.

\((1) f^{\prime}(x)=ae^x-x=0\)有两个零点

\(ae^x=x\)有两个零点即\(e^x=\dfrac{x}{a}\)

\(y=e^x\)图像与\(y=\dfrac{x}{a}\)图像有两个交点

\(y=e^x\)\(y=ex\)相切

\(0<\dfrac{1}{a}<e\)时,有两个交点

\(a>\dfrac{1}{e}\)合题意

\((2)\)\((1)\)\(\begin{cases} ae^{x_1}=x_1\\ \\ ae^{x_2}=x_2 \end{cases}\)\(a=\dfrac{x_1+x_2}{e^{x_1}+e^{x_2}}=\dfrac{x_1-x_2}{e^{x_1}-e^{x_2}}\)

从而

\[x_1+mx_2=ae^{x_1}+mae^{x_2}=a\left(e^{x_1}+me^{x_2}\right)=\dfrac{x_1-x_2}{e^{x_1}-e^{x_2}}\left(e^{x_1}+me^{x_2}\right) \]

\(=\dfrac{e^{x_1}+me^{x_2}}{e^{x_1}-e^{x_2}}(x_1-x_2)=\dfrac{e^{x_1-x_2}+m}{e^{x_1-x_2}-1}(x_1-x_2)--------(1)\)

不妨设\(0<x_1<x_2,x_1-x_2=t<0\)

\((1)=\dfrac{e^t+m}{e^t-1}\cdot t\)

\(\dfrac{e^t+m}{e^t-1}\cdot t>m+1\)恒成立

\(t(e^t+m)-(m+1)(e^t-1)<0\)恒成立

\(g(t)=t(e^t+m)-(m+1)(e^t-1),有g(0)=0\)

\(g^{\prime}(t)=e^t(t-m)+m,有g^{\prime}(0)=0\)

\(g^{\prime\prime}(t)=e^t(t-m+1),有g^{\prime\prime}(0)=1-m\)

\(1-m> 0\)\(m< 1\)时,\(g^{''}(0)>0\)

则由保号性,必有\((t_0,0)\)使得\(t\in(t_0,0)\)\(g^{\prime\prime}(t)>0\)

\(g^{'}(t)\)单调递增,从而\(g^{\prime}(t)>g^{\prime}(0)=0\)

则由保号性,必有\(t\in (t_0^{\prime},0)\)使得\(t\in(t_0^{\prime},0)\)使得\(g^{\prime}(t)>0\)

从而在\(t\in (t_0^{\prime},0)\)\(g(t)>g(0)=0\)矛盾!

\(m\geq 1,\)\(g^{\prime\prime}(t)=e^t(t-m+1)\leq 0\)

从而\(g^{\prime}(t)\)单调递减进而\(g^{\prime}(t)<g^{\prime}(0)=0\)

从而\(g(t)\)单调递减,进而\(g(t)<g(0)=0\)

综上\(m\geq 1\)

posted @ 2023-12-07 09:01  会飞的鱼13  阅读(17)  评论(0)    收藏  举报