每日导数2
双变量问题中参数的处理
已知函数\(f(x)=ae^x-\dfrac{1}{2}x^2+a\)有两个不同的极值点\(x_1,x_2(x_1<x_2)\)
\((1)\) 求\(a\)的取值范围
\((2)\) 已知\(m>0,\)且\(x_1+mx_2>m+1\),求\(m\)的取值范围.
解
\((1) f^{\prime}(x)=ae^x-x=0\)有两个零点
即\(ae^x=x\)有两个零点即\(e^x=\dfrac{x}{a}\)
即\(y=e^x\)图像与\(y=\dfrac{x}{a}\)图像有两个交点
因\(y=e^x\)与\(y=ex\)相切
则\(0<\dfrac{1}{a}<e\)时,有两个交点
即\(a>\dfrac{1}{e}\)合题意
\((2)\) 由\((1)\)得\(\begin{cases} ae^{x_1}=x_1\\ \\ ae^{x_2}=x_2 \end{cases}\)即\(a=\dfrac{x_1+x_2}{e^{x_1}+e^{x_2}}=\dfrac{x_1-x_2}{e^{x_1}-e^{x_2}}\)
从而
\(=\dfrac{e^{x_1}+me^{x_2}}{e^{x_1}-e^{x_2}}(x_1-x_2)=\dfrac{e^{x_1-x_2}+m}{e^{x_1-x_2}-1}(x_1-x_2)--------(1)\)
不妨设\(0<x_1<x_2,x_1-x_2=t<0\)
则\((1)=\dfrac{e^t+m}{e^t-1}\cdot t\)
即\(\dfrac{e^t+m}{e^t-1}\cdot t>m+1\)恒成立
即\(t(e^t+m)-(m+1)(e^t-1)<0\)恒成立
记\(g(t)=t(e^t+m)-(m+1)(e^t-1),有g(0)=0\)
\(g^{\prime}(t)=e^t(t-m)+m,有g^{\prime}(0)=0\)
\(g^{\prime\prime}(t)=e^t(t-m+1),有g^{\prime\prime}(0)=1-m\)
若\(1-m> 0\)即\(m< 1\)时,\(g^{''}(0)>0\)
则由保号性,必有\((t_0,0)\)使得\(t\in(t_0,0)\),\(g^{\prime\prime}(t)>0\)
即\(g^{'}(t)\)单调递增,从而\(g^{\prime}(t)>g^{\prime}(0)=0\)
则由保号性,必有\(t\in (t_0^{\prime},0)\)使得\(t\in(t_0^{\prime},0)\)使得\(g^{\prime}(t)>0\)
从而在\(t\in (t_0^{\prime},0)\),\(g(t)>g(0)=0\)矛盾!
若\(m\geq 1,\)则\(g^{\prime\prime}(t)=e^t(t-m+1)\leq 0\)
从而\(g^{\prime}(t)\)单调递减进而\(g^{\prime}(t)<g^{\prime}(0)=0\)
从而\(g(t)\)单调递减,进而\(g(t)<g(0)=0\)
综上\(m\geq 1\)

浙公网安备 33010602011771号