已知$f(x)=x lnx 1$,若$f(x_1)=f(x_2)\neq0$,求证:$x_1+x_2 2$. $\psline(0,0)(2,2)(4,0)$ start= start: 开始 isLogin= condition: 是否已登录? login= operation: 登陆 selec Read More
posted @ 2016-04-07 07:55 syzxzxy Views(386) Comments(0) Diggs(0)
【题文】定义$M\left\{x,y\right\}=\begin{cases}x,&(x\geq{y})\\y,&(x Read More
posted @ 2016-04-05 21:07 syzxzxy Views(126) Comments(0) Diggs(0)
【题文】对于$c 0$,当非零实数$a,b$满足$4a^2 2ab+4b^2 c=0$且使$|2a+b|$最大时,$\frac{3}{a} \frac{4}{b}+\frac{5}{c}$的最小值为__________. Read More
posted @ 2016-04-05 15:01 syzxzxy Views(158) Comments(0) Diggs(0)
【题文】已知函数$f(x)=\ln{x} ax \frac{a 1}{x}(a 1)$,则当$t\in(0,1)$时,$f(1+t)$与$f(1 t)$的关系是( ) $A.f(1 t) f(1+t)\qquad B.f(1 t)\geq{f(1+t)}\qquad C.f(1 t) Read More
posted @ 2016-04-05 10:37 syzxzxy Views(111) Comments(0) Diggs(0)
题:若存在$\alpha,\beta\in{R}$,使得$\left\{\begin{matrix} t=\cos^3\beta+\frac{\alpha}{2}\cdot\cos\beta \\ \alpha\leqslant{t}\leqslant\alpha 5\cos\beta \end{m Read More
posted @ 2016-04-01 09:43 syzxzxy Views(146) Comments(0) Diggs(0)
已知数列$\left\{a_n\right\}$满足$a_1=\frac{1}{3},\frac{1}{a_{n+1}}=\frac{3}{a_{n}\cdot(a_{n}+3)}$,设$b_n=\frac{1}{a_{n}+3},P_n=b_1\cdot{b_2}\cdot{b_3}\cdot.. Read More
posted @ 2016-03-30 22:55 syzxzxy Views(201) Comments(1) Diggs(0)