摘要:
在深度学习的背景下,NVIDIA的CUDA与AMD的ROCm框架缺乏有效的互操作性,导致基础设施资源利用率显著降低。随着模型规模不断扩大而预算约束日益严格,2-3年更换一次GPU的传统方式已不具可持续性。但是Pytorch的最近几次的更新可以有效利用异构计算集群,实现对所有可用GPU资源的充分调度, 阅读全文
摘要:
文探讨GoT框架如何通过语义-空间思维链方法提升图像生成的精确性与一致性 计算机视觉领域正经历一次技术革新:一种不仅能将文本转换为图像,还能在生成过程中实施结构化推理的系统。这一系统即为GoT(Generative Thoughts of Thinking,生成式思维链)框架——一种将显式推理机制引 阅读全文
摘要:
传统检索增强生成(RAG)架构因依赖静态检索机制,在处理需要顺序信息搜索的复杂问题时存在效能限制。尽管基于代理的推理与搜索方法提供了更具适应性的解决方案,但现有方法大多过度依赖提示工程技术。 针对上述挑战,本文介绍了RAG-Gym框架,这是一种通过在搜索过程中实施细粒度过程监督来增强信息搜索代理的统 阅读全文
摘要:
原始"Attention Is All You Need"论文中提出的标准Transformer架构最初设计用于处理离散输入和输出序列标记(token),但将其应用于时间序列分析时,需要对模型结构进行适当调整以适应连续数据特性。本文详细阐述了使原始Transformer架构能够高效处理连续值时间序列 阅读全文
摘要:
在构建搜索引擎系统时,有效的评估机制是保证系统质量的关键环节。当用户输入查询词如"machine learning tutorials python",系统返回结果列表后,如何客观评估这些结果的相关性和有效性?这正是信息检索评估指标的核心价值所在。 分析用户与搜索引擎的交互模式,我们可以观察到以下行 阅读全文
摘要:
神经网络技术已在计算机视觉与自然语言处理等多个领域实现了突破性进展。然而在微分方程求解领域,传统神经网络因其依赖大规模标记数据集的特性而表现出明显局限性。物理信息神经网络(Physics-Informed Neural Networks, PINN)通过将物理定律直接整合到学习过程中,有效弥补了这一 阅读全文
摘要:
时间序列特征提取是数据科学工作流程中的关键环节,能够将原始时间序列数据转化为具有分析价值的特征表示。本文详细介绍 18 种专业的 Python 库,这些库可用于从时间序列数据中提取关键特征,支持数据科学家进行更深入的分析与建模。 时间序列特征提取的理论基础与价值 时间序列特征是对时间序列数据的统计量 阅读全文
摘要:
SigLIP 2 是一个新型多语言视觉-语言编码器系列,通过整合基于字幕的预训练、自监督学习机制(包括自蒸馏和掩码预测)以及在线数据管理策略,对原始 SigLIP 模型进行了显著改进。这些优化使 SigLIP 2 在零样本分类、图像-文本检索以及为视觉语言模型(VLM)提供视觉表示提取方面均取得了卓 阅读全文
摘要:
近期大语言模型(LLM)的基准测试结果引发了对现有架构扩展性的思考。尽管OpenAI推出的GPT-4.5被定位为其最强大的聊天模型,但在多项关键基准测试上的表现却不及某些规模较小的模型。DeepSeek-V3在AIME 2024评测中达到了39.2%的Pass@1准确率,在SWE-bench Ver 阅读全文
摘要:
选择性自我监督微调(Selective Self-to-Supervised Fine-Tuning,S3FT)是一种创新的大语言模型微调方法,该方法通过部署专门的语义等价性判断器来识别训练集中模型自身生成的正确响应。在微调过程中,S3FT策略性地结合这些正确响应与剩余样本的标准答案(或其释义版本) 阅读全文