摘要:
Xu Y., Zhao S., Song J., Stewart R. and Ermon S. A theory of usable information under computational constraints. International Conference on Learning 阅读全文
摘要:
Wang L. and Joachims T. Uncertainty quantification for fairness in two-stage recommender systems. In International World Wide Web Conference (WWW), 20 阅读全文
摘要:
Zhang Y., Dong X., Ding W., Li B., Jiang P. and Gai K. Divide and Conquer: Towards better embedding-based retrieval for recommender systems from a mul 阅读全文
摘要:
Gao Z., Guo J., Tan X., Zhu Y., Zhang F., Bian J. and Xu L. Difformer: Empowering diffusion models on the embedding space for text generation. arXiv p 阅读全文
摘要:
Wu H., Zhang Y., Ma C., Lyu F., Diaz F. and Liu X. A survey of diversification techniques in search and recommendation. arXiv preprint arXiv:2212.1446 阅读全文
摘要:
Meymandpour R. and Davis J. G. Measuring the diversity of recommendations: a preference-aware approach for evaluating and adjusting diversity. Knowled 阅读全文
摘要:
Clarke C. L. A., Kolla M., Cormack G. V., Vechtomova O., Ashkan A., B\ddot{u}ttcher S. and MacKinnon I. Novelty and diversity in information retrieval 阅读全文
摘要:
Zhai C., Cohen W. W. and Lafferty J. Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In International ACM SIGIR C 阅读全文
摘要:
Wilhelm M., Ramanathan A., Bonomo A., Jain S., Chi E. H. and Gillenwater J. Practical diversified recommendations on youtube with determinantal point 阅读全文
摘要:
Carbonell J. and Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In International ACM SIGIR Con 阅读全文
摘要:
Rombach R., Blattmann A., Lorenz D., Esser P. and Ommer B. High-resolution image synthesis with latent diffusion models. In IEEE Computer Vision and P 阅读全文
摘要:
Zhang M. and Chen Y. Inductive matrix completion based on graph neural networks. In International Conference on Learning Representations (ICLR) 概 本文介绍 阅读全文
摘要:
Zhang M., Cui Z., Jiang S. and Chen Y. Beyond link prediction: Predicting hyperlinks in adjacency space. In AAAI Conference on Advancement of Artifici 阅读全文
摘要:
Zhang M. and Chen Y. Link prediction based on graph neural networks. In Advances in Neural Information Processing Systems (NIPS), 2018. 概 这篇工作 的延续的工作. 阅读全文
摘要:
Zhang M. and Chen Y. Weisfeiler-Lehman neural machine for link prediction. In ACM International Conference on Knowledge Discovery and Data Mining (KDD 阅读全文
摘要:
Pan L., Shi C., Dokmani{'c} I. Neural link prediction with walk pooling. In International Conference on Learning Representations (ICLR), 2022. 概 作者认为 阅读全文
摘要:
Cai X., Huang C., Xia L. and Ren X. LightGCL: Simple yet effective graph contrastive learning for recommendation. In International Conference on Learn 阅读全文
摘要:
Song J., Meng C. and Ermon S. Denoising diffusion implicit models. In International Conference on Learning Representations (ICLR), 2021. 概 DDIM 从另一种观点 阅读全文
摘要:
Choi J., Lee J., Shin C., Kim S., Kim H. and Yoon S. Perception prioritized training of diffusion models. In IEEE Computer Vision and Pattern Recognit 阅读全文
摘要:
Gong S., Li M., Feng J., Wu Z. and Kong L. DiffuSeq: Sequence to sequence text generation with diffusion models. In International Conference on Learni 阅读全文