摘要:
Liu M., Gao H. and Ji S. Towards deeper graph neural networks. KDD, 2020. 概 本文介绍了一种加深模型的方法. 符号说明 $G = (V, E)$, 图; $|V| = n$; $|E| = m$; $\bm{A} \in \m 阅读全文
摘要:
Graikos A., Malkin N., Jojic N. and Samaras D. Diffusion models as plug-and-play priors. NIPS, 2022. 概 有了先验分布 $p(\mathbf{x})$ (用一般的扩散模型去拟合), 我们总是像添加一些 阅读全文
摘要:
Tang J. and Wang K. Personalized top-n sequential recommendation via convolutional sequence embedding. WSDM, 2018. 概 序列推荐的经典之作, 将卷积用在序列推荐之上. 符号说明 $\ma 阅读全文
摘要:
Ethayarajh K., Choi Y. and Swayamdipta S. Understanding dataset difficulty with $\mathcal{V}$-usable information. ICML, 2022. 概 将 $\mathcal{V}$-inform 阅读全文
摘要:
Gupta U., Ferber A. M., Dilkina B. and Steeg G. V. Controllable guarantees for fair outcomes via contrastive information estimation. AAAI, 2021. 概 本文提 阅读全文
摘要:
Ma Y., Wang S., Aggarwal C. C. and Tang J. Graph convolutional networks with eigenpooling. KDD, 2019. 概 本文提出了一种新的框架, 在前向的过程中, 可以逐步将相似的 nodes 和他们的特征聚合在 阅读全文
摘要:
Chen T. and Wong R. C. Handling information loss of graph neural networks for session-based recommendation. KDD, 2020. 概 作者发现图用在 Session 推荐中存在: lossy 阅读全文
摘要:
Chiang W., Liu X., Si S., Li Y., Bengio S. and Hsieh C. Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks. 阅读全文
摘要:
Cen Y., Zou X., Zhang J., Yang H., Zhou J. and Tang J. Representation learning for attributed multiplex heterogeneous network. KDD, 2019. 概 本文在 Attrib 阅读全文
摘要:
目录概符号说明MotivationLADIES代码 Zou D., Hu Z., Wang Y., Jiang S., Sun Y. and Gu Q. Layer-dependent importance sampling for training deep and large graph con 阅读全文
摘要:
Wang X., Ji H., Shi C., Wang B., Cui P., Yu P. and Ye Y. Heterogeneous graph attention network. WWW, 2019. 概 Attention + 异构图. 符号说明 $\mathcal{G} = (\ma 阅读全文
摘要:
Ren Y., Liu B., Huang C., Dai P., Bo L. and Zhang J. Heterogeneous deep graph infomax. arXiv preprint arXiv:1911.08538, 2019. 概 本文介绍了异构图的一种无监督学习方法. 这里 阅读全文
摘要:
目录概符号说明MotivationFastGCN方差分析代码 Chen J., Ma T. and Xiao C. FastGCN: fast learning with graph convolutional networks via importance sampling. ICLR, 2018 阅读全文
摘要:
Li Q., Han Z. and Wu X. Deeper insights into graph convolutional networks for semi-supervised learning. AAAI, 2018. 概 本文分析了 GCN 的实际上就是一种 Smoothing, 但是 阅读全文
摘要:
目录概符号说明Motivation本文方法代码 Chen J., Zhu J. and Song L. Stochastic training of graph convolutional networks with variance reduction. ICML, 2018. 概 我们都知道, 阅读全文
摘要:
Li Z., Sun A. and Li C. DiffuRec: A diffusion model for sequential recommendation. arXiv preprint arXiv:2304.00686, 2023. 概 扩散模型用于序列推荐, 性能提升很大. DiffuR 阅读全文
摘要:
Fan Z., Liu Z., Wang A., Nazari Z., Zheng L., Peng H. and Yu P. S. Sequential recommendation via stochastic self-attention. International World Wide W 阅读全文
摘要:
Chamberlain B. P., Shirobokov S., Rossi E., Frasca F., Markovich T., Hammerla N., Bronstein M. M. Hansmire M. Graph neural networks for link predictio 阅读全文