摘要:
Lahoti P., Beutel A., Chen J., Lee K., Prost F., Thain N., Wang X. and CHi E. H. Fairness without demographics through adversarially reweighted learni 阅读全文
摘要:
Dai E. and Wang S. Towards self-explainable graph neural network. In International Conference on Information and Knowledge Management (CIKM), 2021. 概 阅读全文
摘要:
Zhu D., Zhang Z., Cui P. and Zhu W. Robust graph convolutional networks against adversarial attacks. In ACM International Conference on Knowledge Disc 阅读全文
摘要:
Xu K., Chen H., Liu S., Chen P., Weng T., Hong M. and Lin X. Topology attack and defense for graph neural networks: an optimization perspective. In In 阅读全文
摘要:
Olatunji I. E., Funke T. and Khosla M. Releasing graph neural networks with differential privacy guarantees. In ACM Symposium on Neural Gaze Detection 阅读全文
摘要:
Papernot N., Abadi M., Erlingsson U., Goodfellow I. and Talwar K. Semi-supervised knowledge transfer for deep learning from private training data. In 阅读全文
摘要:
Zhu J., Yan Y., Zhao L., Heimann M., Akoglu L. and Koutra D. Beyond homophily in graph neural networks: current limitations and effective designs. In 阅读全文
摘要:
Alon U. and Yahav E. On the bottleneck of graph neural networks and its practical implications. In International Conference on Learning Representation 阅读全文
摘要:
Ma Y., Liu X., Zhao T., Liu Y., Tang J. and Shah N. A unified view on graph neural networks as graph signal denoising. In International Conference on 阅读全文
摘要:
Gilmer J., Schoenholz S. S., Riley P. F., Vinyals O. and Dahl G. E. Neural message passing for quantum chemistry. In International Conference on Machi 阅读全文
摘要:
Zuo Y., Liu G., Lin H., Guo J., Hu X. and Wu J. Embedding temporal network via neighborhood formation. In ACM International Conference on Knowledge Di 阅读全文
摘要:
Zhou L., Yang Y., Ren X., Wu F. and Zhuang Y. Dynamic network embedding by modeling triadic closure process. In AAAI Conference on Advancement of Arti 阅读全文
摘要:
Grover A. and Leskovec J. node2vec: Scalable Feature Learning for Networks. In ACM International Conference on Knowledge Discovery and Data Mining (KD 阅读全文
摘要:
Blanc G. and Rendle S. Adaptive sampled softmax with kernel based sampling. In International Conference on Machine Learning (ICML), 2018. 概 这儿 已经讨论了现在 阅读全文
摘要:
Chen J., Lian D., Li Y., Wang B., Zheng K. and Chen E. Cache-augmented inbatch importance resampling for training recommender retriever. In Advances i 阅读全文
摘要:
Yi Y., Yang J., Hong L., Cheng D. Z., Heldt L., Kumthekar A., Zhao Z., Wei L. and Chi E. Sampling-bias-corrected neural modeling for large corpus item 阅读全文
摘要:
Bengio Y. and Sen\acute{e}cal J. S. Adaptive importance sampling to accelerate training of a neural probabilistic language model. IEEE Transactions on 阅读全文
摘要:
Jin W., Liu X., Ma Y., Aggarwal C. and Tang J. Feature overcorrelation in deep graph neural networks: a new perspective. In ACM International Conferen 阅读全文
摘要:
目录概符号说明WL-Test现阶段 GNN 的表达能力GIN其它的注意事项实际的操作代码 Xu K., Hu W., Leskovec J. and Jegelka S. How powerful are graph neural networks? In International Confere 阅读全文