随笔分类 - AtCoder
摘要:转化计数对象。 直接数最终剩下的球的集合似乎并不好做。考虑数选择的球的集合(显然选择的顺序不重要,只有选择了哪些球重要)。 先把所有球按 \(x\) 坐标从小到大排序。设我们选择的球的下标为 \(i_1 < i_2 < \cdots < i_k\)。那么能选择这些球当且仅当 \(y_{i_1} >
阅读全文
摘要:洛谷传送门 AtCoder 传送门 比较有意思的小清新题。 第一步是时光倒流,看成是每次经过一条未被访问过的边才染色。 奇偶相关容易想到二分图。发现若有一个黑白交替的奇环(即从一个点开始遍历完整个环得到的颜色序列是黑白交替地),那我们可以先染完这个环。又因为它是奇环,所以我们遍历一遍这个环就可以切换
阅读全文
摘要:洛谷传送门 AtCoder 传送门 比较有趣的一个题。 考虑一个弱化版,算 colorful 序列个数。有一个 \(O(nK)\) 的 dp,大概就是设 \(f_{i, j}\) 为考虑到第 \(i\) 个数,当前最长互不相同后缀长度为 \(j\)。 转移考虑若往后面填一个在这 \(j\) 个数以外
阅读全文
摘要:洛谷传送门 AtCoder 传送门 特判 \(n = 1\)。将 \(n, m\) 都减 \(1\),答案即为 \[[x^m]\frac{1}{(1 - x - x^2)(1 - x)^n} \]若能把这个分式拆成 \(\frac{A(x)}{(1 - x)^n} + \frac{B(x)}{1 -
阅读全文
摘要:洛谷传送门 AtCoder 传送门 首先做一些初步的观察:A 和 B 的解法是对称的,所以 A 对的方案数等于 B 对的方案数。同时若 A 和 B 同时对则每个置换环环长为 \(1\),方案数为 \(n!\)。 所以,若设 A 对的方案数为 \(x\),那么答案为 \(n!^2 - (x - n!)
阅读全文
摘要:洛谷传送门 AtCoder 传送门 答案即为: \[\sum\limits_c \prod\limits_{i = 1}^n [c_i \le b_i] a_i^{c_i} \]考虑生成函数,设 \(F_i(x) = \sum\limits_{j = 0}^{b_i} (a_i x)^j\)。那么答
阅读全文
摘要:洛谷传送门 AtCoder 传送门 下文令 \(m\) 为原题面的 \(k\)。 题目条件很奇怪,考虑有没有什么比较好用的策略。 发现对于任意一个三元组 \((a, b, c)\),其中 \(a, b, c\) 不全相等,那么同时添加 \((a, b, c), (b, c, a), (c, a, b
阅读全文
摘要:洛谷传送门 AtCoder 传送门 不妨考虑最后的结果可以成为哪些 \(a_i\) 的组合。为了方便分析,我们令 \(a_i = 2^{i - 1}\)。 进行一次操作后,所有 \(\text{popcount}(a_i)\) 都为偶数。所以一个 \(x \in [0, 2^n - 1]\) 能被生
阅读全文
摘要:洛谷传送门 AtCoder 传送门 考虑对于一个确定的串怎么判断合法性。 容易发现删到某个时刻若 \(1\) 的个数大于 \(0\) 的个数了,因为我们肯定不会蠢到在不是全 \(1\) 的时候删 \(111\),所以 \(c_1 - c_0\) 在不是全 \(1\) 的时候至少是不会变小的。 所以我
阅读全文
摘要:洛谷传送门 AtCoder 传送门 讲个笑话,一年前做过,今天模拟赛出了,但是完全不记得,然后想了一种完全不同的方法,我真抽象。 首先考虑什么时候有解。显然 \(m = n + f(a)\) 的时候有解,令 \(b_i = i, c_i = a_i\) 即可。然后考虑任意交换一对 \((i, j)\
阅读全文
摘要:洛谷传送门 AtCoder 传送门 容易发现跳跃次数为 \(O(\log V)\)。考虑对于跳跃 \(k\) 次后的限制 \(\left\lfloor\frac{V}{2^k}\right\rfloor\),对每个点预处理出不再跳跃能到达的最左和最右的点 \([l_{k, i}, r_{k, i}]
阅读全文
摘要:洛谷传送门 AtCoder 传送门 和 CF1010F Tree 基本一致。 考虑经典树形背包,设 \(f_{u, i}\) 为 \(u\) 子树内选了 \(i\) 个点的方案数。初始有 \(f_{u, 0} = 1\)。每次考虑合并儿子 \(v\),有转移: \[f_{u, i + j} \get
阅读全文
摘要:洛谷传送门 AtCoder 传送门 赛后调了 40min,哈哈。 首先先把 \(a, b\) 排序。 考虑先枚举 Alice 选的数 \(a_i\),然后若 \(\forall j, \exists k \ne i, (a_i, b_j, a_k)\) 能组成三角形,Alice 就赢了。 考虑简化条
阅读全文
摘要:洛谷传送门 AtCoder 传送门 我们实际上并不关心 \(\text{mex}\) 的具体值,只关心它有没有成为 \(\text{mex}\)。 考虑有一个 \(k = \min(m + 1, n)\) 个空位的长条。我们每次可以往长条最左边的空位放一个球(对应 \(a_i\) 成为 \(\tex
阅读全文
摘要:洛谷传送门 AtCoder 传送门 赛时在想一些奇怪的东西,没想到建图。 考虑使用元素两两之间的相对顺序来描述序列。发现若 \(x, y\) 互质那么它们的相对顺序被确定了。 先把输入的序列从小到大排序。然后考虑互质的数之间先连一条无向边。那么先手要把无向边定向使得它是个 DAG,后手会求出这个 D
阅读全文
摘要:洛谷传送门 AtCoder 传送门 太厉害了!!!!!! 首先竞赛图有个性质,若存在环则一定存在三元环。 先把 DAG 的情况(一条链)特判了。然后缩点。发现非链底的部分不能存在大小 \(> 1\) 的 SCC。所以枚举非链底的部分有多少点,转化为 SCC 的情况。 发现对于任意点(设为 \(1\)
阅读全文
摘要:洛谷传送门 AtCoder 传送门 下文的点 \(1, 2, 3, 4\) 对应原题面中的 \(S, T, U, V\)。 直接对无向图欧拉回路计数不太好做。考虑给边定向。枚举有 \(i\) 条边是从 \(1\) 到 \(2\) 的。那么 \(2 \to 1\) 有 \(a - i\) 条边。由于这
阅读全文
摘要:洛谷传送门 AtCoder 传送门 首先考虑只要求构造任意一个符合条件的 \(a\) 怎么做。考虑建图,\((i, j, k, l)\) 向 \(\forall x \in \{0, 1\}, (j, k, l, x)\) 连有向边。那么就是要求固定每个点经过次数的一条哈密顿路径。 但是哈密顿路径仍
阅读全文
摘要:洛谷传送门 AtCoder 传送门 考虑若我们对于每个 \(a_i\) 求出来了使得 \(g^{b_i} \equiv a_i \pmod P\) 的 \(b_i\)(其中 \(g\) 为 \(P\) 的原根),那么 \(a_i^k \equiv a_j \pmod P\) 等价于 \(kb_i \
阅读全文
摘要:洛谷传送门 AtCoder 传送门 我是傻逼。很平凡的一个计数。但是不会啊。怎么会是呢。 考虑 Kruskal 求解 MST on Line 问题。我们可以想到统计边权 \(= a_i\) 的出现次数。 然后又可以容斥转化成统计边权 \(\le a_i\) 的出现次数,设其为 \(f_i\)。 考虑
阅读全文

浙公网安备 33010602011771号