摘要:
The Silhouette Score is a metric used to evaluate the quality of a clustering result. It measures how well each data point fits within its assigned cl
阅读全文
posted @ 2025-11-27 09:29
ZhangZhihuiAAA
阅读(4)
推荐(0)
摘要:
newsgroups = newsgroups.drop('tf_features') # dropping non-existed column doesn't cause an error
阅读全文
posted @ 2025-11-26 15:15
ZhangZhihuiAAA
阅读(5)
推荐(0)
摘要:
from pyspark.sql.functions import expr df_filtered = df_filtered.withColumn('filtered_array', expr('filter(filtered_doc, x -> len(x) >= 4)')) Please h
阅读全文
posted @ 2025-11-26 11:03
ZhangZhihuiAAA
阅读(2)
推荐(0)
摘要:
In PostgreSQL, you can convert a timestamp to a date (i.e., drop hours/minutes/seconds) in several common ways: ✅ 1. Cast to date Fastest and simplest
阅读全文
posted @ 2025-11-26 08:29
ZhangZhihuiAAA
阅读(14)
推荐(0)
摘要:
from pyspark.ml.feature import PolynomialExpansion data = [ (0, Vectors.dense([1.0, 2.0])), (1, Vectors.dense([2.0, 3.0])), (2, Vectors.dense([3.0, 4.
阅读全文
posted @ 2025-11-23 22:13
ZhangZhihuiAAA
阅读(6)
推荐(0)
摘要:
from pyspark.ml.feature import PCA pca = PCA(k=2, inputCol='features', outputCol='pca_features') pca_model = pca.fit(df) pca_df = pca_model.transform(
阅读全文
posted @ 2025-11-23 21:47
ZhangZhihuiAAA
阅读(5)
推荐(0)
摘要:
from pyspark.ml.feature import Normalizer normalizer = Normalizer(inputCol='features', outputCol='normalized_features', p=2.0) normalized_df = normali
阅读全文
posted @ 2025-11-23 21:19
ZhangZhihuiAAA
阅读(4)
推荐(0)
摘要:
from pyspark.ml.feature import MinMaxScaler scaler = MinMaxScaler(inputCol='features', outputCol='scaled_features') scaler_model = scaler.fit(df) scal
阅读全文
posted @ 2025-11-23 21:05
ZhangZhihuiAAA
阅读(4)
推荐(0)
摘要:
from pyspark.ml.feature import OneHotEncoder data = [(0.0, 1.0), (1.0, 0.0), (2.0, 1.0)] columns = ["input1", "input2"] df = spark.createDataFrame(dat
阅读全文
posted @ 2025-11-23 17:37
ZhangZhihuiAAA
阅读(7)
推荐(0)
摘要:
In Spark, I ran below code snippet: # The vocabSize parameter was set to 7 (0 to 6 - a total of 7 words), # meaaning that the vocabulary size (unique
阅读全文
posted @ 2025-11-23 10:47
ZhangZhihuiAAA
阅读(5)
推荐(0)