随笔分类 - 机器学习
摘要:注:本篇博文是根据其他优秀博文编写的,我只是对其改变了知识的排序,另外代码是《机器学习实战》中的。转载请标明出处及参考资料。 1 Adaboost 算法实现过程 1.1 什么是 Adaboost 算法 Adaboost是英文"Adaptive Boosting"(自适应增强)的缩写,它的自适应在于:
阅读全文
摘要:注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的;若对原作者有损请告知,我会及时处理。转载请标明来源。 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α;第二部分是SMO算法对于对偶因子的求解;第三部分是核函数的原理与应用,讲核函数的
阅读全文
摘要:注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的;若对原作者有损请告知,我会及时处理。转载请标明来源。 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α;第二部分是SMO算法对于对偶因子的求解;第三部分是核函数的原理与应用,讲核函数的
阅读全文
摘要:注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的;若对原作者有损请告知,我会及时处理。转载请标明来源。 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α;第二部分是SMO算法对于对偶因子的求解;第三部分是核函数的原理与应用,讲核函数的
阅读全文
摘要:注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的;若对原作者有损请告知,我会及时处理。转载请标明来源。 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对偶函数的对偶因子α;第二部分是SMO算法对于对偶因子的求解;第三部分是核函数的原理与应用,讲核函数的
阅读全文
摘要:声明:本篇博文是学习《机器学习实战》一书的方式路程,系原创,若转载请标明来源。 1 Logistic 回归算法的原理 1.1 需要的数学基础 我在看机器学习实战时对其中的代码非常费解,说好的利用偏导数求最值怎么代码中没有体现啊,就一个简单的式子:θ= θ - α Σ [( hθ(x(i))-y(i)
阅读全文
摘要:声明:本篇博文是学习《机器学习实战》一书的方式路程,系原创,若转载请标明来源。 1 贝叶斯定理的引入 概率论中的经典条件概率公式: 公式的理解为,P(X ,Y)= P(Y,X)<=> P(X | Y)P(Y)= P(Y | X)P (X),即 X 和 Y 同时发生的概率与 Y 和 X 同时发生的概率
阅读全文
摘要:在Python 中使用 Matplotlib 注释绘制决策树形图 声明:本篇博文是学习《机器学习实战》一书的方式路程,系原创,若转载请标明来源。 上次我们对数据生成决策树有了一定了解,但树是以字典的形式表达的,非常不易于理解;因此,通过决策树的图形可视化有助于我们对决策树的理解和认识。利用强大的Ma
阅读全文
摘要:声明:本篇博文是学习《机器学习实战》一书的方式路程,系原创,若转载请标明来源。 1 决策树的基础概念 决策树分为分类树和回归树两种,分类树对离散变量做决策树 ,回归树对连续变量做决策树。决策树算法主要围绕两大核心问题展开:第一, 决策树的生长问题 , 即利用训练样本集 , 完成决策树的建立过程 。第
阅读全文
摘要:声明:本篇博文是学习《机器学习实战》一书的方式路程,系原创,若转载请标明来源。 1. K-近邻算法的一般流程: (1)收集数据:可以使用任何方法(如爬虫)。 (2)准备数据:距离计算所需要的数值,最好是结构化的数据格式。 (3)分析数据:可以使用任何方法。 (4)测试算法:计算误差率。 (5)使用算
阅读全文

浙公网安备 33010602011771号