会员
周边
新闻
博问
闪存
众包
赞助商
Chat2DB
所有博客
当前博客
我的博客
我的园子
账号设置
会员中心
简洁模式
...
退出登录
注册
登录
pengyule 的博客
抬头看远方
新随笔
管理
上一页
1
···
7
8
9
10
11
12
13
14
15
···
20
下一页
2022年2月10日
[SDOI2017]序列计数
摘要: 题意 Alice 想要得到一个长度为 \(n\) 的正整数序列 \(\{a_i\}\),满足: \(a_i\le m\) \(p|\sum a_i\) \(\exists i\in[1,n]\),使 \(a_i\) 是质数 Alice 想知道,有多少个序列满足她的要求。 朴素 由于题目有【\(n\)
阅读全文
posted @ 2022-02-10 21:07 pengyule
阅读(70)
评论(0)
推荐(0)
2022年2月9日
斜率优化
摘要: 斜率优化是一种对于形如 \(F_{i}=\min/\max\{F_j+...\}\) 的转移方程式,将其结构变换从而与几何联系起来,转化为坐标系内求凸包切线的问题。 结合例题讲解。 【例1】任务安排 1 说明:题目中的 \(f\) 被我篡改成了 \(c\)。 列出朴素转移方程。设 \(F(i,j)\
阅读全文
posted @ 2022-02-09 19:49 pengyule
阅读(115)
评论(0)
推荐(0)
2022年2月8日
ACSX: Feb, 2021
该文被密码保护。
阅读全文
posted @ 2022-02-08 17:03 pengyule
阅读(0)
评论(0)
推荐(0)
2022年2月7日
CF1584F Strange LCS
摘要: 给你 \(n\) 个由大小写字母构成的字符串,求它们的最长公共子序列。输出长度及字符串(任意一个)。 \(n\le 10\) 在每个字符串中,每个字符至多出现 2 次 【Intuition】 一个字符串为最长公共子序列: 如果我们现在的对象是 t1 那么就可以通过 t2 来转移。 所以可以 dp。设
阅读全文
posted @ 2022-02-07 16:03 pengyule
阅读(81)
评论(0)
推荐(0)
2022年2月6日
ExCRT
摘要: 求 $$ \begin{cases} x\equiv a_1\pmod{m_1}\ x\equiv a_2\pmod{m_2}\ \vdots\ x\equiv a_n\pmod{m_n} \end{cases} $$ 的一个任意解。 以上是 ExCRT解决的问题。 https://www.luog
阅读全文
posted @ 2022-02-06 22:26 pengyule
阅读(122)
评论(0)
推荐(0)
狄利克雷前缀和
摘要: 狄利克雷卷积 \((f*g)(n)=\sum_{d|n}f(d)g(n/d)=\sum_{ab=n}f(a)g(b)\)。求 \(1\sim n\) 的 \(f*g\) 通过欧拉筛类似方式 \(O(n\ln n)\)。 给定 \(n,\{a_n\}\) ,以及 \(\{a_n\},\{b_n\}\)
阅读全文
posted @ 2022-02-06 15:36 pengyule
阅读(107)
评论(0)
推荐(0)
ZRSX: 2022.02.05
该文被密码保护。
阅读全文
posted @ 2022-02-06 09:38 pengyule
阅读(0)
评论(0)
推荐(0)
2022年1月28日
Contest Is Over - Codeforces 比赛记录
摘要: CF#768(Div.2) CF只有两个小时的比赛时间,一旦出了点“小”差错 基本就废了 B题后来按照扭曲的题意想了好久一直WA,1h ran out很慌地看了C并A了 后来发现B实在简单很后悔又把B A了,然而比赛还剩18min,我还在rk2800 想着有没有可能把D做了 但看到standings
阅读全文
posted @ 2022-01-28 00:50 pengyule
阅读(185)
评论(0)
推荐(0)
2022年1月26日
[IOI2021]distribute candies
摘要: https://loj.ac/s/1365219 总算是A掉了这道IOI2021day1签到。但不仅受了题解提示,而且花的时间太长了,修正了好多思路上的补丁,很无奈。好在积累了一个数据结构常见套路。 这才知道IOI的题目不用输入输出;甚至不用主函数,这跟Topcoder似乎有点类似。 vector<
阅读全文
posted @ 2022-01-26 22:46 pengyule
阅读(139)
评论(0)
推荐(0)
入门二维凸包
摘要: 算法概述 考虑平面上的若干个无序分布的点,要用一根橡皮筋框柱所有点(橡皮筋绷在点上),橡皮筋所受弹力方向只能向外。这跟橡皮筋及橡皮筋所框柱的区域就叫做一个凸包;橡皮筋叫做凸壳。 书面地,对于平面内的点集 \(X\),所有完全包含它的凸多边形的交集叫做 \(X\) 的凸包(Convex Heap)。
阅读全文
posted @ 2022-01-26 12:20 pengyule
阅读(100)
评论(0)
推荐(0)
上一页
1
···
7
8
9
10
11
12
13
14
15
···
20
下一页