摘要:
这一章我们聊聊指令微调,模型还是那个熟悉的模型,核心的差异在于指令集和评估侧重点的不同,每个模型只侧重介绍差异点。按时间顺序分别是Flan,T0,InstructGPT, Tk-Instruct 阅读全文
这一章我们聊聊指令微调,模型还是那个熟悉的模型,核心的差异在于指令集和评估侧重点的不同,每个模型只侧重介绍差异点。按时间顺序分别是Flan,T0,InstructGPT, Tk-Instruct 阅读全文
posted @ 2023-03-26 19:35
风雨中的小七
阅读(2569)
评论(2)
推荐(1)

这一章我们介绍在下游任务微调中固定LM参数,只微调Prompt的相关模型。这类模型的优势很直观就是微调的参数量小,能大幅降低LLM的微调参数量,是轻量级的微调替代品
这一章我们介绍固定prompt微调LM的相关模型,他们的特点都是针对不同的下游任务设计不同的prompt模板,在微调过程中固定模板对预训练模型进行微调。以下按时间顺序介绍,支持任意NLP任务的T5,针对文本分类的两篇PET和LM-BFF。
借着ChatGPT的东风,我们来梳理下prompt范式的相关模型,你还以其他形式看到过prompt概念,例如Demonstration,Instruction,In-Context learning,few-shot learning等等~开篇我们简单介绍下Prompt范式,并以其中的冻结参数Tunning-Free Prompt为线索串联GPT2,GPT3,LAMA和AutoPrompt这四种冻结参数的基础模型
在前面章节中,我们介绍了几种半监督方案包括一致性正则,FGM对抗,最小熵原则,mixup增强。MixMatch则是集各家所长,把上述方案中的SOTA都融合在一起实现了1+1+1>3的效果。我们以MixMatch为基准,一并介绍几种衍生方案MixText,UDA,FixMatch
今天来聊聊非常规的损失函数,第一章我们介绍当标注标签存在噪声时可以尝试的损失函数,这里的标签噪声主要指独立于特征分布的标签噪声
这个系列会针对NLP比赛,经典问题的解决方案进行梳理并给出代码复现~算是找个理由把代码从TF搬运到torch。Chapter1是CCF BDC2019的赛题:金融信息负面及主体判定,属于实体关联的情感分类任务,相关代码实现以及Top方案梳理详见ClassisSolution/fin_new_entity
这一章我们介绍嵌入模型的增强&正则化方案Mixup和Manifold Mixup,方法朴实无华,效果亲测有效~
这一章我们来唠唠如何优化BERT对文本长度的限制,核心是对Transformer计算效率的优化,我们会分别从片段递归,稀疏注意力机制和矩阵降维几个方向,聊聊更高效的Transformer魔改方案
论文针对预训练语料和领域分布,以及任务分布之间的差异,提出了DAPT领域适应预训练(domain-adaptive pretraining)和TAPT任务适应预训练(task-adaptive pretraining)两种继续预训练方案,并在医学论文,计算机论文,新闻和商品评价4个领域上进行了测试。想法很简单就是在垂直领域上使用领域语料做继续预训练,不过算是开启了新的训练范式,从之前的pretrain+fintune,到pretrain+continue pretrain+finetune
浙公网安备 33010602011771号