摘要:
问题描述:已知二元抛物面 $P:4Fz=x^2 + y^2$,焦点点光源 $Fo(0,0,F)$,反射点 $Li(a,b,c)$,求反射光线。 前置知识:二元函数切面 若二元函数 $z=f(x,y)$ 在 $(x_0,y_0)$ 处可微,记 $z_0=f(x_0,y_0)$,则其在 $(x_0,y_ 阅读全文
问题描述:已知二元抛物面 $P:4Fz=x^2 + y^2$,焦点点光源 $Fo(0,0,F)$,反射点 $Li(a,b,c)$,求反射光线。 前置知识:二元函数切面 若二元函数 $z=f(x,y)$ 在 $(x_0,y_0)$ 处可微,记 $z_0=f(x_0,y_0)$,则其在 $(x_0,y_ 阅读全文
posted @ 2022-11-08 11:41
Gokix
阅读(124)
评论(0)
推荐(0)

抛物线 $P: x^2=2py$ 外一点 $A(m,n)$,向 $P$ 引两条切线,切于 $B(x_1,y_1),C(x_2,y_2)$。连 $BC$,过 $A$ 作与 $y$轴平行的直线 $AD$ 交 $BC$ 于 $D$,连 $AD$,记 $|AD|=h$。 则有 $$4ph=(x_1-x_2)
《$\mathbf{^7LiH}$》续写 当我看到一个黑洞时,这个黑洞是我制造的 一条河从我的眼底流到你的耳朵里 这个世界上没有秘密 从天上流到海里的水含有80%以上的盐 你一出生就玩火 永远,永远 进入黑夜,会有光明 《品红试纸》 一张象征力量的品红试纸位于三根二氧化锰之间 右边两个符号相同 左边
安乐椅系列 收集Gokix平时学习中遇到的一些比较有趣的点。 1. 卡尔松不等式 多元柯西不等式。 2. 抛物线准线梯形 复杂的模型,在部分中也看得出来吗? 3. 拉尔瓦定理 圆锥曲线中一个有趣的小定理。 4. 拉格朗日乘数法 解决最值问题的底牌。 5. 一种利用二次曲线系证定点的方法 震撼。 6.
前置知识:二次曲线系 考虑二次曲线 \(Ax^2+Bxy+Cy^2+Dx+Ey+F=0\) 只需要平面内 5 个点(任意 3 点不共线)即可唯一确定。所以如果用 4 个点进行限制,放开 1 个自由度,就能表示一类曲线。然后再与已知直线联立,就可以求得一些关系。 常见形式是:在 \(C_1\) 与 \
拉格朗日乘数法可以用于求函数最值,其在目标函数和约束函数比较简单(如多项式函数)时有奇效。但应当注意的是,拉格朗日乘数法好解的题一般不等式或者函数法也很好解,做题时应当将拉格朗日乘数法作为最后底牌,不要轻易使用,先想想有没有更好算的做法。 以二元函数最值为例: 欲求 $f(x,y)$ 的最值,有约束
已知:抛物线 $C:y^2=2px(p>0)$,$D(n,0),E(m,0)$ 为其对称轴上两点,$M$ 是 $C$ 上异于原点 $O$ 的一动点,直线 $ME$ 交 $C$ 于 $N$,直线 $MD$ 交 $C$ 于 $P$,直线 $MD$ 交 $C$ 于 $Q$,直线 $PQ$ 交 $C$ 的对
如图,对于抛物线 $\Gamma:y=2px(p>0)$,$F(\frac{x}{2},0)$ 为其焦点,$\delta:x=-\frac{x}{2}$ 为其准线。一过 $F$ 的直线交 $\Gamma$ 于 $P,Q$ 两点。过 $P,Q$ 两点分别向 $\delta$ 作垂,垂足分别为 $A,B
障碍函数法直接对线性规划标准形式的变式进行操作。 $\max z= \sum\limits_{j=1}^{n} c_j x_j$ $s.t. \begin{cases} \sum\limits_{j=1}^n a_{ij}x_j \le b_j,i=1,2,\dots,m \ x_j \ge 0,j
牛顿迭代法 该算法的目标为:对于在 $[a,b]$ 上连续且单调的函数 $f(x)$,求方程 $f(x)=0$ 的近似解。 算法流程 给定 $f(x)$。 初始时由一个相对近似零点 $x_0$ 开始,不断迭代优化。 假设当前近似解为 $x_i$,作过点 $(x_i,f(x,i))$ 关于 $f(x)
P1986 元旦晚会 在长为 $n$ 的 0/1 数轴上有 $n$ 个整点,一开始全部点均为 0。有 $m$ 个要求,形如 $l_i,r_i,w_i$,表示 $l_i$ 到 $r_i$ 的区间和不小于 $w_i$。求最少需要把多少个点变为 1。 显然的贪心结论是:把区间按右端点从小到大排序后,尽可能
~~囧仙堂~~海鲜堂(东方邪星章制作组)的曲在thb上死的死伤的伤,网易云上的音质很糟。 BGM的主力是Wanwan老师,但是社团会和部分其他人士合作,所以也不完全是Wanwan老师作曲。(当然是可以直接听出来的) 对于绀星这种熟背官作极大部分曲目的人而言,实在是不容易再听出二创的好。所以绀星需要多
CF1712D 给定一个长为 $n$ 的序列 $a$。定义一个 $n$ 个点的无向完全图,点 $l$ 和点 $r$ 之间的距离为 $\min\limits_{i\in[l,r]}{a_i}$。 可以进行 $k$ 次操作,每次操作可以选定一个 $i$ 并将 $a_i$ 赋值为 $10^9$ 。最大化这
内容 在 \(m \times n\) 的非负实数矩阵 \[A=\left[ \begin{array}{cccc}{a_{11}} & {a_{12}} & {\cdots} & {a_{1 n}} \\ {a_{21}} & {a_{22}} & {\cdots} & {a_{2 n}} \\
by Fred & Gokix & Skull 一. 背景:相切可吃理论 一位清华学生在演讲中指出,薯片掉落到地面后与地面相切,接触面无限小,因而没有沾染细菌,拾起后可放心食用: 这一听上去荒谬的理论在提出之后引发热议,受到大量批驳与质疑,这一状况引发了我们的关注。 市面上常见的薯片分为弧形、鞍形和
浙公网安备 33010602011771号