我的github
上一页 1 ··· 316 317 318 319 320 321 322 323 324 ··· 340 下一页
摘要: - Fire modules consisting of a 'squeeze' layer with 1*1 filters feeding an 'expand' layer with 1*1 and 3*3 filters(Fire模塊包含一個'1*1濾波器的'擠壓'層和一個1*1和3*3濾波 阅读全文
posted @ 2018-06-04 23:14 XiaoNiuFeiTian 阅读(214) 评论(0) 推荐(0)
摘要: - Dense blocks where each layer is connected to every other layer in feedforward fashion(緊密塊是指每一個層與每個其他層都以前向的方式相連接) - Alleviates vanishing gradient, s 阅读全文
posted @ 2018-06-04 17:34 XiaoNiuFeiTian 阅读(165) 评论(0) 推荐(0)
摘要: -Argues that key is transitioning effectively from shallow to deep and residual representations are not necessary(认为关键是有效地从浅到深,而残差表示方法是不必要的) -Fractal 阅读全文
posted @ 2018-06-04 16:14 XiaoNiuFeiTian 阅读(387) 评论(0) 推荐(0)
摘要: - Mlpconv layer with "micronetwork" with each conv layer to compute more abstract features for local patches(带有“微网”的MLPCCONV层的每个CONV层计算局部补丁的更多抽象特征) - 阅读全文
posted @ 2018-06-04 15:37 XiaoNiuFeiTian 阅读(162) 评论(0) 推荐(0)
摘要: psimpl - generic n-dimensional polyline simplification. psimpl is a lightweight C++ library that is generic, easy to use, and supports multiple simpli 阅读全文
posted @ 2018-06-04 14:27 XiaoNiuFeiTian 阅读(11) 评论(0) 推荐(0)
摘要: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Microsoft Research {kahe, v-xiangz, v-shren, jiansun}@microsoft.com Abstract摘要 Deeper neural network 阅读全文
posted @ 2018-05-31 23:11 XiaoNiuFeiTian 阅读(215) 评论(0) 推荐(0)
摘要: Rupesh Kumar SrivastavaKlaus Greff ̈J urgenSchmidhuberThe Swiss AI Lab IDSIA / USI / SUPSI{rupesh, klaus, juergen}@idsia.ch AbstractTheoretical and em 阅读全文
posted @ 2018-05-31 23:01 XiaoNiuFeiTian 阅读(226) 评论(0) 推荐(0)
摘要: Rupesh Kumar Srivastava (邮箱:RUPESH@IDSIA.CH)Klaus Greff (邮箱:KLAUS@IDSIA.CH)J¨ urgen Schmidhuber (邮箱:JUERGEN@IDSIA.CH)The Swiss AI Lab IDSIA(瑞士AI实验室IDS 阅读全文
posted @ 2018-05-29 14:05 XiaoNiuFeiTian 阅读(5170) 评论(0) 推荐(0)
摘要: 计算离散的frechet 距离,通过计算两条曲线之间的点的距离,将两条曲线上的点按照距离以及曲线的趋势进行配对,最后根据这些配对的距离选出最后的离散frechet距离(compute discrete frechet distance between two curves ) 地图匹配算法实践:ht 阅读全文
posted @ 2018-05-21 21:02 XiaoNiuFeiTian 阅读(469) 评论(0) 推荐(0)
摘要: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 Abstract摘要 We study characteristics of receptive fi 阅读全文
posted @ 2018-05-21 19:26 XiaoNiuFeiTian 阅读(1004) 评论(0) 推荐(0)
上一页 1 ··· 316 317 318 319 320 321 322 323 324 ··· 340 下一页