随笔分类 - Catalan
摘要:洛谷传送门 CF 传送门 发现去掉匹配的 \(2k\) 个括号后,剩下的串一定形如 \()) \ldots )(( \ldots (\),其中右括号数量为 \(a = m - k\),左括号数量为 \(b = n - k\)。 考虑把剩下的串像 \()) \ldots ) \mid (( \ldot
阅读全文
摘要:洛谷传送门 AtCoder 传送门 第二道问号题。 设 \(A \ge B\)。我们现在将点的坐标刻画到二维平面上。相当于找到一条 \((0, 0) \to (A, B)\) 的路径,要求不能跨过直线 \(y = x\)。有 \(3\) 种移动方式: 向右移动一格。 向上移动一格。 将当前点提到直线
阅读全文
摘要:洛谷传送门 思路 考虑将图往左压正,就得到了一个直角三角形的图。 在这个图中,如果没有斜边,则任意时刻走的向下的边都要 $\ge$ 向右的边。这一部分就是 [SCOI2010] 生成字符串 了。 现在有斜边,考虑枚举走斜边的次数,设 $u_i$ 为第 $r$ 行第 $c$ 列的点,走斜边的次数为 $
阅读全文
摘要:洛谷传送门 思路 若不能往右走,则本题就是卡特兰数。 现在加上可以往右走的条件,可以在一开始都往右走的前提下任选 $k$ 个右上,$k$ 个右下,并且不能碰到 $y = -1$。因此方案数为: $$\sum\limits_{k=1}^{\left\lfloor\frac{n}{2}\right\rf
阅读全文

浙公网安备 33010602011771号