2008 年研究生入学考试数学一解答题第 1 题解析(两种方法+手写作答)

原文:https://zhaokaifeng.com/?p=1879

题目

求极限 \(\lim_{x \rightarrow 0}\frac{[\sin x-\sin (\sin x)] \sin x}{x^{4}}\)

解析

当题目中要求的是“极限”,而且出现了 \(x \rightarrow 0\) 时就要考虑是不是要用到或者可以用到等价无穷小。

还需要考虑的可能用到的知识是洛必达法则。当 \(x \rightarrow 0\) 时可能产生 \(\frac{0}{0}\) 型的洛必达或者 \(\frac{\infty}{\infty}\) 型的洛必达。而且,洛必达法则就是为求极限而生的,可以把对函数的求极限转换成对函数的导数求极限,从而可能化简原式。

方法一

本题考查的是等价无穷小,需要用到的两个等价无穷小如下(当 \(x \rightarrow 0\) 时):

\(x \sim \sin x;\)

\(x-\sin x \sim \frac{1}{6}x^{3}.\)

于是有:

\(原式=\lim_{x \rightarrow 0} \frac{[\sin x-\sin (\sin x)]\sin x}{\sin^{4}x}=\lim_{x \rightarrow 0}\frac{\sin x-\sin(\sin x)}{\sin^{3} x}\)

\(\sin x=t\), 则有:

原式 \(=\lim_{x \rightarrow 0}\frac{t-\sin(t)}{t^{3}}\)

由于,当 \(x \rightarrow 0\) 时,\(\sin x \rightarrow 0\), 于是有 \(t \rightarrow 0\), 因此根据常见的等价无穷小,有:

\(t-\sin t \sim \frac{1}{6}t^{3}\)

因此有:

\(原式=\lim_{x \rightarrow 0}\frac{\frac{1}{6}t^{3}}{t^{3}}=\frac{1}{6}\)

方法二

本题也可以结合使用等价无穷小与 \(\frac{0}{0}\) 型洛必达等定理解出。

需要用到的等价无穷小有(当 \(x \rightarrow 0\) 时):

\(x \sim \sin x\)

\(1-\cos x \sim \frac{1}{2}x^{2}\)

需要用到的洛必达法则公式是:

\(\lim_{x \rightarrow x_{0}}\frac{f(x)}{g(x)}=\lim_{x \rightarrow 0}\frac{f'(x)}{g'(x)}\)

需要用到的求导规则是:

\((\sin x)'=\cos x\)

\((u-v)'=u'-v'\)

\(f'(x)=f'[g(x)]g'(x)\)

解答思路如下:

由于,当 \(x \rightarrow 0\) 时,\(\sin x \sim x\), 于是有:

\(原式=\lim_{x \rightarrow 0}\frac{[\sin x-\sin(\sin x)]\sin x}{x^{3}\sin x}=\lim_{x \rightarrow0}\frac{\sin x-\sin(\sin x)}{x^{3}} (1)\)

由于,当 \(x \rightarrow 0\) 时,有:

\(\sin x-\sin(\sin x) \rightarrow 0, 且存在导数;\)

\(x^{3} \rightarrow 0, 且存在导数.\)

因此,可以对 \((1)\) 式使用洛必达法则:

\(原式=\lim_{x\rightarrow0}\frac{[\sin x-\sin(\sin x)]'}{(x^{3})'}=\lim_{x\rightarrow0}\frac{\cos x-\cos(\sin x)\cos x}{3x^{2}}\)

化简得:

\(原式=\lim_{x\rightarrow0}\frac{\cos[1-\cos(\sin x)]}{3x^{2}}\)

由于,当 \(x \rightarrow 0\) 时,\(\cos x \rightarrow 1\), 因此,进一步化简得:

\(原式=\lim_{x\rightarrow0}\frac{1-\cos(\sin x)}{3x^{2}}\)

使用等价无穷小进一步计算可得:

\(原式=\lim_{x\rightarrow0}\frac{\frac{1}{2}\sin^{2}x}{3x^{2}}=\frac{\frac{1}{2}}{3}=\frac{1}{6}\)

方法一手写作答

方法二手写作答

EOF

posted @ 2019-06-17 14:49  ZhaoKaifengCom  阅读(...)  评论(...编辑  收藏