Given the root
of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
- The left of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [2,1,3] Output: true
Example 2:
Input: root = [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4.
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -231 <= Node.val <= 231 - 1
My Solution:
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def isValidBST(self, root: Optional[TreeNode]) -> bool: inorder_list = [] def inorder_traverse(root): if root.left: inorder_traverse(root.left) inorder_list.append(root.val) if root.right: inorder_traverse(root.right) inorder_traverse(root) for i in range(len(inorder_list) - 1): if inorder_list[i + 1] <= inorder_list[i]: return False return True