You are given an array of non-overlapping intervals intervals where intervals[i] = [starti, endi] represent the start and the end of the ith interval and intervals is sorted in ascending order by starti. You are also given an interval newInterval = [start, end] that represents the start and end of another interval.
Insert newInterval into intervals such that intervals is still sorted in ascending order by starti and intervals still does not have any overlapping intervals (merge overlapping intervals if necessary).
Return intervals after the insertion.
Note that you don't need to modify intervals in-place. You can make a new array and return it.
Example 1:
Input: intervals = [[1,3],[6,9]], newInterval = [2,5] Output: [[1,5],[6,9]]
Example 2:
Input: intervals = [[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8] Output: [[1,2],[3,10],[12,16]] Explanation: Because the new interval [4,8] overlaps with [3,5],[6,7],[8,10].
Constraints:
0 <= intervals.length <= 104intervals[i].length == 20 <= starti <= endi <= 105intervalsis sorted bystartiin ascending order.newInterval.length == 20 <= start <= end <= 105
My Solution:
class Solution(object): def insert(self, intervals, newInterval): """ :type intervals: List[List[int]] :type newInterval: List[int] :rtype: List[List[int]] """ res_left = [] res_right = [] while intervals: # out of the left if newInterval[1] < intervals[0][0]: return res_left + [newInterval] + intervals + res_right # out of the right elif newInterval[0] > intervals[-1][1]: return res_left + intervals + [newInterval] + res_right # covers elif newInterval[0] <= intervals[0][0] and newInterval[1] >= intervals[-1][1]: return res_left + [newInterval] + res_right # bridges elif intervals[0][0] <= newInterval[0] <= intervals[0][1] and intervals[-1][0] <= newInterval[1] <= intervals[-1][1]: return res_left + [[intervals[0][0], intervals[-1][1]]] + res_right # between else: # on the right of the first if newInterval[0] > intervals[0][1]: res_left.append(intervals.pop(0)) # overlap else: intervals[0] = [min(intervals[0][0], newInterval[0]), max(intervals[0][1], newInterval[1])] # on the left of the end if newInterval[1] < intervals[-1][0]: res_right.insert(0, intervals.pop()) # overlap else: intervals[-1] = [min(intervals[-1][0], newInterval[0]), max(intervals[-1][1], newInterval[1])] return res_left + [newInterval] + res_right


浙公网安备 33010602011771号