随笔分类 - 其他数学问题—多项式
摘要:首先我们考虑$n$的情况,显然以$n$为分界线可以将整个序列分成两部分,就像这样: 、 那么我们考虑:在这个东西前面才会有前缀最大的统计,在这个东西后面才会有后缀最大的统计 这样就剩下了$n-1$个元素,而我们需要把这$n-1$个元素分成$A+B-2$个集合,然后把每个集合的最大的一个放在一端,然后
阅读全文
摘要:问题:已知一个次数为$n-1$的多项式$F(x)$,求一个多项式$G(x)$满足$G(x)\equiv F(x)^{k}$ 这个...你需要多项式exp 直接推一发式子就可以了: $G(x)\equiv F(x)^{k}$ $G(x)\equiv e^{lnF(x)^{k}}$ $G(x)\equi
阅读全文
摘要:生成函数好题 首先我们对每一种物品(设体积为$v_{i}$)构造生成函数$F(x)=\sum_{j=1}^{\infty}x^{jv_{i}}$ 那么很显然答案就是这一堆东西乘在一起 但是...这个复杂度是$O(nmlog_{2}m)$的,显然不合理 因此我们考虑优化 我们发现,如果我们把所有生成函
阅读全文
摘要:这一篇是一个专题总结,可能会写很久,希望不会咕掉 一.组合数学: ①.基本公式: 1.排列数公式$A_{n}^{m}=\frac{n!}{(n-m)!}$,表示从$n$个元素中选出$m$个元素并进行全排列的方案数 特别的,当$m=n$时,有$A_{n}^{n}=n!$(规定$0!=1$) 2.组合数
阅读全文
摘要:首先我们需要找出一个朴素的递推来解决这个问题: 设状态$f(i)$表示权值和为$i$的二叉树的数量,$g(i)$表示权值$i$是否在集合中,即$g(i)=[i\in S]$ 枚举根节点和左子树的权值,立刻得到一个递推: $f(n)=\sum_{i=0}^{n}g(i)\sum_{j=0}^{n-i}
阅读全文
摘要:这一版是mx发明的MTT 速度极快,精度基本有保证,在奇技淫巧无效时可以考虑这个东西... (但是无论如何我都不想用真正的任意模数NTT,那种东西简直毒瘤而且常常数巨大...) 原理:并不关心
阅读全文
摘要:好毒瘤的一道题啊... 对每个$a_{i}\in S$,设$F(x)$为用$j$个$a_{i}$构造出$ja_{i}$的生成函数,那么$F(x)=\sum_{j=1}^{∞}x^{ja_{i}}$ 根据这篇博客里的内容,可以求得:$F(x)=\frac{1}{1-x^{a_{i}}}$ 设$t_{i
阅读全文
摘要:有两种推导方法: 第一种: 设状态$f(i)$表示有$i$个点的无向连通图个数,$g(i)$表示有$i$个点的无向图个数,那么显然$f(n)$即为我们所求,而$g(i)=2^{\frac{i(i-1)}{2}}$ 于是写出一个递推:枚举$1$号点所在的连通块,可得:$g(n)=\sum_{i=1}^
阅读全文
摘要:问题:已知一个多项式$F(x)$次数为$n-1$,求一个多项式$G(x)$满足$G(x)\equiv e^{F(x)}$($mod$ $x^{n}$) 保证$F(x)$常数项为$0$ 好像有点困难... 首先有一个基础知识: 我们可以用牛顿迭代求出一个多项式的多项式零点 也即已知一个多项式$F(x)
阅读全文
摘要:题意:求$\sum_{i=0}^{n}\sum_{j=0}^{i}S(i,j)2^{j}j!$ 一看就觉得不可做... 但是还是需要仔细分析的 最重要的是一步转化: 根据第二类斯特林数的定义:$S(n,m)$表示将$n$个不同物品分到$m$个集合中的方案数 然后考虑求和式里面那个东西,发现其含义就是
阅读全文
摘要:问题:已知一个次数为$n-1$的多项式$F(x)$,求一个多项式$G(x)$使得$G(x)\equiv ln(F(x))$($mod$ $x^{n}$) (保证$F(x)$常数项为1) 这个比较简单: 两边求导,得: $G^{'}(x)\equiv \frac{F^{'}(x)}{F(x)}$($m
阅读全文
摘要:问题:已知一个多项式$F(x)$次数为$n-1$,求一个多项式$G(x)$使得$(G(x))^{2}\equiv F(x)$($mod$ $x^{n}$) (保证常数项为$1$) 仍然是推式子 首先,不难发现的是如果$F(x)$次数为0,那么$G(x)=1$ 类似多项式求逆,我们倍增处理: 设已知$
阅读全文
摘要:多项式求逆是多项式除法的基础,如果你不会多项式求逆,请看这里 问题:已知两个多项式$F(x)$(次数为n),$G(x)$(次数为m),求两个多项式$Q(x)$与$R(x)$,满足$F(x)=G(x)Q(x)+R(x)$,所有运算在模998244353意义下进行 推一发式子: $F(x)=G(x)Q(
阅读全文
摘要:问题: 已知一个次数为$n-1$的多项式$F(x)$,求一个多项式$G(x)$使得$F(x)*G(x)\equiv 1$($mod x^{n}$),所有运算在模998244353意义下进行 怎么搞? 先进行一点分析: 如果$F(x)$只有一项,那么$G(x)$里也只有一项,就是$F(x)$里那项的逆
阅读全文