随笔分类 -  其他数学问题

摘要:有人说这题像游走... 关于游走的思想,他死了... 明明直接从期望dp的角度考虑更简单合理嘛 首先由于是异或运算不妨逐位考虑 对于每一位,设状态$f[i]$表示从第$i$个点到第$n$个点,这一位上是$1$的概率 那么我们按边权讨论转移: 若这条边边权为$1$:$f[i]+=\frac{1-f[t 阅读全文
posted @ 2019-07-11 17:18 lleozhang 阅读(271) 评论(0) 推荐(0)
摘要:首先我们考虑$n$的情况,显然以$n$为分界线可以将整个序列分成两部分,就像这样: 、 那么我们考虑:在这个东西前面才会有前缀最大的统计,在这个东西后面才会有后缀最大的统计 这样就剩下了$n-1$个元素,而我们需要把这$n-1$个元素分成$A+B-2$个集合,然后把每个集合的最大的一个放在一端,然后 阅读全文
posted @ 2019-07-08 18:46 lleozhang 阅读(187) 评论(0) 推荐(0)
摘要:首先我们考虑直接搞 考虑每个元素的贡献,得表达式: $ans=\sum_{i=1}^{n}w_{i}\sum_{j=1}^{n}jC_{n-1}^{j-1}S(n-j,k-1)$ 即枚举每个元素所在集合中元素个数及划分方案数 这个玩意显然是$O(n^{2})$的 有大佬把它化简之后变成了可以直接递推 阅读全文
posted @ 2019-07-05 10:03 lleozhang 阅读(278) 评论(0) 推荐(0)
摘要:首先我们考虑一个暴力的dp: 我们从小到大加入每个数,当我们加入第$i$个数时,可能产生的逆序对数量是$[0,i-1]$(这个证明考虑把第$i$个数放在哪即可),这样可以列出一个递推式: 设状态$dp[i][j]$表示已经加到了第$i$个数,此时的逆序对个数为$j$,那么有转移:$dp[i][j]= 阅读全文
posted @ 2019-07-04 21:50 lleozhang 阅读(496) 评论(0) 推荐(0)
摘要:考虑容斥,容斥系数-1 首先不难发现,如果没有一个公司一条边这个限制的话,就是一个很简单的矩阵树定理了 可是有了这个限制,就会出现重复 因此我们用容斥原理来解决 我们枚举哪个(些)公司没被用到,对剩下的公司跑矩阵树定理,乘一个容斥系数累计贡献即可 时间复杂度$O(n^{3}2^{n})$ 代码: 阅读全文
posted @ 2019-07-04 15:01 lleozhang 阅读(188) 评论(0) 推荐(0)
摘要:问题:已知一个次数为$n-1$的多项式$F(x)$,求一个多项式$G(x)$满足$G(x)\equiv F(x)^{k}$ 这个...你需要多项式exp 直接推一发式子就可以了: $G(x)\equiv F(x)^{k}$ $G(x)\equiv e^{lnF(x)^{k}}$ $G(x)\equi 阅读全文
posted @ 2019-06-23 21:20 lleozhang 阅读(501) 评论(0) 推荐(0)
摘要:生成函数好题 首先我们对每一种物品(设体积为$v_{i}$)构造生成函数$F(x)=\sum_{j=1}^{\infty}x^{jv_{i}}$ 那么很显然答案就是这一堆东西乘在一起 但是...这个复杂度是$O(nmlog_{2}m)$的,显然不合理 因此我们考虑优化 我们发现,如果我们把所有生成函 阅读全文
posted @ 2019-06-23 20:02 lleozhang 阅读(224) 评论(0) 推荐(0)
摘要:这一篇是一个专题总结,可能会写很久,希望不会咕掉 一.组合数学: ①.基本公式: 1.排列数公式$A_{n}^{m}=\frac{n!}{(n-m)!}$,表示从$n$个元素中选出$m$个元素并进行全排列的方案数 特别的,当$m=n$时,有$A_{n}^{n}=n!$(规定$0!=1$) 2.组合数 阅读全文
posted @ 2019-06-22 09:58 lleozhang 阅读(1856) 评论(0) 推荐(2)
摘要:斯特林数好题: 求$\sum_{i=1}^{n}C_{n}^{i}i^{k}$ 首先第二类斯特林数有一个性质: $x^{n}=\sum_{i=0}^{n}S_{2}(n,i)C_{x}^{i}i!$ 那么我们展开原来的表达式,得到: $\sum_{i=1}^{n}C_{n}^{i}i^{k}$=$\ 阅读全文
posted @ 2019-06-21 15:56 lleozhang 阅读(245) 评论(0) 推荐(0)
摘要:容斥好题 首先我们考虑,如果没有节点之间一一对应的限制,我们可以这样$dp$: 设状态$dp[i][j]$表示以$i$为根节点的子树,节点$i$与节点$j$对应的方案数 那么转移就是$dp[i][j]=\prod_{son_{i}}\sum_{k=1}^{n}map[j][k]dp[son_{i}] 阅读全文
posted @ 2019-06-20 20:06 lleozhang 阅读(238) 评论(0) 推荐(0)
摘要:单位根反演好题 题意:求$\sum_{i=0}^{n}C_{n}^{i}S^{i}a_{ i mod 4 }$ 看到$i$ $mod$ $4$这种东西,很显然要分类讨论啦 于是变成了这种形式: $\sum_{d=0}^{3}a_{d}\sum_{i=0}^{n}[$ $i\equiv d$ $mod 阅读全文
posted @ 2019-06-20 17:43 lleozhang 阅读(309) 评论(0) 推荐(0)
摘要:基本形式: 设$f(x)=\sum_{i=0}^{n}a_{i}x^{i}$ 则有$\sum_{i=0}^{n}a_{i}[d|i]=\frac{1}{d}\sum_{p=0}^{d-1}f(w_{d}^{p})$ 在$FFT$中会用到的形式: $f_{i}=\sum_{j=0}^{n-1}\fra 阅读全文
posted @ 2019-06-20 17:04 lleozhang 阅读(177) 评论(0) 推荐(0)
摘要:二项式反演的公式: 若已知$f(n)=\sum_{i=0}^{n}(-1)^{i}C_{n}^{i}g_{i}$,则有:$g(n)=\sum_{i=0}^{n}(-1)^{i}C_{n}^{i}f(i)$ 一个更常见的公式: 已知$f(n)=\sum_{i=0}^{n}C_{n}^{i}g(i)$, 阅读全文
posted @ 2019-06-19 20:32 lleozhang 阅读(207) 评论(0) 推荐(0)
摘要:首先需要知道二项式反演的一个推论:$f(k)=\sum_{i=k}^{n}C_{i}^{k}g(i)$,则$g(k)=\sum_{i=k}^{n}(-1)^{i-k}C_{i}^{k}f(i)$ 然后我们考虑如果糖果多于药片的比药片多与糖果的多$k$个,那么糖果多于药片的个数应该为$\frac{n+ 阅读全文
posted @ 2019-06-19 20:28 lleozhang 阅读(151) 评论(0) 推荐(0)
摘要:留个位置 本题...一言难尽啊... 首先可以发现,恰好为$S$个的颜色数量为$M=min(\frac{n}{S},m)$ 首先我们设$g(i)$表示至少选了$i$种颜色达到恰好$S$个的方案数,那么$g(i)=C_{m}^{i}(m-i)^{n-iS}\frac{n!}{(S!)^{i}(n-iS 阅读全文
posted @ 2019-06-19 18:25 lleozhang 阅读(207) 评论(0) 推荐(0)
摘要:首先我们需要找出一个朴素的递推来解决这个问题: 设状态$f(i)$表示权值和为$i$的二叉树的数量,$g(i)$表示权值$i$是否在集合中,即$g(i)=[i\in S]$ 枚举根节点和左子树的权值,立刻得到一个递推: $f(n)=\sum_{i=0}^{n}g(i)\sum_{j=0}^{n-i} 阅读全文
posted @ 2019-06-19 15:24 lleozhang 阅读(167) 评论(0) 推荐(0)
摘要:这一版是mx发明的MTT 速度极快,精度基本有保证,在奇技淫巧无效时可以考虑这个东西... (但是无论如何我都不想用真正的任意模数NTT,那种东西简直毒瘤而且常常数巨大...) 原理:并不关心 阅读全文
posted @ 2019-06-19 13:50 lleozhang 阅读(284) 评论(0) 推荐(0)
摘要:好毒瘤的一道题啊... 对每个$a_{i}\in S$,设$F(x)$为用$j$个$a_{i}$构造出$ja_{i}$的生成函数,那么$F(x)=\sum_{j=1}^{∞}x^{ja_{i}}$ 根据这篇博客里的内容,可以求得:$F(x)=\frac{1}{1-x^{a_{i}}}$ 设$t_{i 阅读全文
posted @ 2019-06-18 17:31 lleozhang 阅读(180) 评论(0) 推荐(0)
摘要:有两种推导方法: 第一种: 设状态$f(i)$表示有$i$个点的无向连通图个数,$g(i)$表示有$i$个点的无向图个数,那么显然$f(n)$即为我们所求,而$g(i)=2^{\frac{i(i-1)}{2}}$ 于是写出一个递推:枚举$1$号点所在的连通块,可得:$g(n)=\sum_{i=1}^ 阅读全文
posted @ 2019-06-18 13:35 lleozhang 阅读(172) 评论(0) 推荐(0)
摘要:问题:已知一个多项式$F(x)$次数为$n-1$,求一个多项式$G(x)$满足$G(x)\equiv e^{F(x)}$($mod$ $x^{n}$) 保证$F(x)$常数项为$0$ 好像有点困难... 首先有一个基础知识: 我们可以用牛顿迭代求出一个多项式的多项式零点 也即已知一个多项式$F(x) 阅读全文
posted @ 2019-06-14 17:28 lleozhang 阅读(1890) 评论(0) 推荐(0)

levels of contents