异步电动机矢量控制MATLAB/Simulink仿真方案

异步电动机矢量控制MATLAB/Simulink仿真方案。矢量控制(Vector Control)也称为磁场定向控制(FOC),是高性能交流调速的核心技术。

一、基础理论回顾

异步电动机矢量控制基本原理:

  1. 坐标变换:三相静止→两相旋转(dq坐标系)
  2. 解耦控制:将定子电流分解为励磁分量(Id)和转矩分量(Iq)
  3. 磁场定向:保持转子磁链恒定,实现类似直流电机的控制

二、Simulink仿真模型构建

1. 主仿真模型框架

%% 异步电动机矢量控制主仿真模型
% 文件名: induction_motor_foc_sim.slx

% 主要模块组成:
% 1. 速度/转矩给定模块
% 2. PI调节器(速度环、电流环)
% 3. 坐标变换模块(Clark、Park、反Park)
% 4. SVPWM调制模块
% 5. 逆变器模块
% 6. 异步电动机模块
% 7. 测量与观测模块

2. 核心模块详细实现

2.1 坐标变换模块(MATLAB Function)

% Clark变换(三相静止→两相静止)
function [ialpha, ibeta] = clarke_transform(ia, ib, ic)
    % Clark变换
    % 输入:三相电流 ia, ib, ic
    % 输出:两相静止坐标系电流 ialpha, ibeta
    
    ialpha = ia;
    ibeta = (ia + 2*ib) / sqrt(3);
end

% Park变换(两相静止→两相旋转)
function [id, iq] = park_transform(ialpha, ibeta, theta)
    % Park变换
    % 输入:ialpha, ibeta, 旋转角度 theta
    % 输出:dq坐标系电流 id, iq
    
    id = ialpha * cos(theta) + ibeta * sin(theta);
    iq = -ialpha * sin(theta) + ibeta * cos(theta);
end

% 反Park变换(两相旋转→两相静止)
function [ualpha, ubeta] = inv_park_transform(ud, uq, theta)
    % 反Park变换
    % 输入:dq坐标系电压 ud, uq, 旋转角度 theta
    % 输出:两相静止坐标系电压 ualpha, ubeta
    
    ualpha = ud * cos(theta) - uq * sin(theta);
    ubeta = ud * sin(theta) + uq * cos(theta);
end

2.2 磁链观测器模块

function [psi_r_alpha, psi_r_beta, theta_e, wr] = flux_observer(u_alpha, u_beta, i_alpha, i_beta, Rs, Ls, Lm, Lr, Ts)
    % 基于电压模型的磁链观测器
    % 输入:定子电压、电流,电机参数,采样时间
    % 输出:转子磁链、电角度、电角速度
    
    persistent psi_s_alpha_prev psi_s_beta_prev;
    persistent psi_r_alpha_prev psi_r_beta_prev;
    
    if isempty(psi_s_alpha_prev)
        psi_s_alpha_prev = 0;
        psi_s_beta_prev = 0;
        psi_r_alpha_prev = 0;
        psi_r_beta_prev = 0;
    end
    
    % 定子磁链观测(电压模型)
    psi_s_alpha = psi_s_alpha_prev + Ts * (u_alpha - Rs * i_alpha);
    psi_s_beta = psi_s_beta_prev + Ts * (u_beta - Rs * i_beta);
    
    % 转子磁链计算
    sigma = 1 - Lm^2/(Ls*Lr);  % 漏磁系数
    L_sigma = sigma * Ls;
    
    psi_r_alpha = (Lr/Lm) * (psi_s_alpha - L_sigma * i_alpha);
    psi_r_beta = (Lr/Lm) * (psi_s_beta - L_sigma * i_beta);
    
    % 计算电角度和角速度
    theta_e = atan2(psi_r_beta, psi_r_alpha);
    
    % 角速度计算(差分法)
    if psi_r_alpha_prev ~= 0 || psi_r_beta_prev ~= 0
        wr = (psi_r_alpha * (psi_r_beta - psi_r_beta_prev) - ...
              psi_r_beta * (psi_r_alpha - psi_r_alpha_prev)) / ...
              (psi_r_alpha^2 + psi_r_beta^2) / Ts;
    else
        wr = 0;
    end
    
    % 更新状态
    psi_s_alpha_prev = psi_s_alpha;
    psi_s_beta_prev = psi_s_beta;
    psi_r_alpha_prev = psi_r_alpha;
    psi_r_beta_prev = psi_r_beta;
end

2.3 SVPWM模块

function [Ta, Tb, Tc, T1, T2, sector] = svpwm(u_alpha, u_beta, Vdc, Ts)
    % 空间矢量脉宽调制(SVPWM)
    % 输入:αβ电压,直流母线电压,采样周期
    % 输出:三相占空比,作用时间,扇区号
    
    % 标准化电压
    u_alpha_ref = u_alpha / (Vdc/2);
    u_beta_ref = u_beta / (Vdc/2);
    
    % 扇区判断
    Uref1 = u_beta_ref;
    Uref2 = (sqrt(3)*u_alpha_ref - u_beta_ref)/2;
    Uref3 = (-sqrt(3)*u_alpha_ref - u_beta_ref)/2;
    
    sector = 0;
    if Uref1 > 0
        sector = sector + 1;
    end
    if Uref2 > 0
        sector = sector + 2;
    end
    if Uref3 > 0
        sector = sector + 4;
    end
    
    % 扇区与作用时间映射
    switch sector
        case 1  % 扇区I
            X = sqrt(3) * Ts * u_beta_ref;
            Y = sqrt(3) * Ts * (sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
            Z = sqrt(3) * Ts * (-sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
            T1 = -Z;
            T2 = X;
        case 2  % 扇区II
            X = sqrt(3) * Ts * (sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
            Y = sqrt(3) * Ts * (-sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
            Z = -sqrt(3) * Ts * u_beta_ref;
            T1 = X;
            T2 = Y;
        case 3  % 扇区III
            X = sqrt(3) * Ts * u_alpha_ref;
            Y = sqrt(3) * Ts * (u_alpha_ref/2 + sqrt(3)*u_beta_ref/2);
            Z = sqrt(3) * Ts * (-u_alpha_ref/2 + sqrt(3)*u_beta_ref/2);
            T1 = -Z;
            T2 = -X;
        case 4  % 扇区IV
            X = -sqrt(3) * Ts * u_alpha_ref;
            Y = sqrt(3) * Ts * (u_alpha_ref/2 - sqrt(3)*u_beta_ref/2);
            Z = sqrt(3) * Ts * (u_alpha_ref/2 + sqrt(3)*u_beta_ref/2);
            T1 = X;
            T2 = Z;
        case 5  % 扇区V
            X = -sqrt(3) * Ts * (sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
            Y = sqrt(3) * Ts * (sqrt(3)*u_alpha_ref/2 - u_beta_ref/2);
            Z = sqrt(3) * Ts * u_beta_ref;
            T1 = -Y;
            T2 = -X;
        case 6  % 扇区VI
            X = -sqrt(3) * Ts * (-sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
            Y = -sqrt(3) * Ts * u_alpha_ref;
            Z = sqrt(3) * Ts * (u_alpha_ref/2 + sqrt(3)*u_beta_ref/2);
            T1 = Y;
            T2 = -Z;
        otherwise
            T1 = 0;
            T2 = 0;
    end
    
    % 限制作用时间
    T1 = min(max(T1, 0), Ts);
    T2 = min(max(T2, 0), Ts);
    T0 = Ts - T1 - T2;
    
    if T0 < 0
        T1 = T1 * Ts/(T1 + T2);
        T2 = T2 * Ts/(T1 + T2);
        T0 = 0;
    end
    
    % 计算三相作用时间
    switch sector
        case 1
            Ta = (T0/2 + T1 + T2)/Ts;
            Tb = (T0/2 + T2)/Ts;
            Tc = (T0/2)/Ts;
        case 2
            Ta = (T0/2 + T1)/Ts;
            Tb = (T0/2 + T1 + T2)/Ts;
            Tc = (T0/2)/Ts;
        case 3
            Ta = (T0/2)/Ts;
            Tb = (T0/2 + T1 + T2)/Ts;
            Tc = (T0/2 + T2)/Ts;
        case 4
            Ta = (T0/2)/Ts;
            Tb = (T0/2 + T1)/Ts;
            Tc = (T0/2 + T1 + T2)/Ts;
        case 5
            Ta = (T0/2 + T2)/Ts;
            Tb = (T0/2)/Ts;
            Tc = (T0/2 + T1 + T2)/Ts;
        case 6
            Ta = (T0/2 + T1 + T2)/Ts;
            Tb = (T0/2)/Ts;
            Tc = (T0/2 + T1)/Ts;
        otherwise
            Ta = 0.5; Tb = 0.5; Tc = 0.5;
    end
end

3. PI控制器模块

function output = pi_controller(error, Kp, Ki, Ts, limit_min, limit_max)
    % 带抗饱和的PI控制器
    % 输入:误差,比例系数,积分系数,采样时间,输出限幅
    
    persistent integral_prev;
    if isempty(integral_prev)
        integral_prev = 0;
    end
    
    % 比例项
    proportional = Kp * error;
    
    % 积分项
    integral = integral_prev + Ki * error * Ts;
    
    % 抗饱和处理
    output_temp = proportional + integral;
    
    if output_temp > limit_max
        output = limit_max;
        % 积分抗饱和:只有误差与输出同方向时才积分
        if error < 0
            integral_prev = integral;
        end
    elseif output_temp < limit_min
        output = limit_min;
        if error > 0
            integral_prev = integral;
        end
    else
        output = output_temp;
        integral_prev = integral;
    end
end

三、完整的仿真脚本

%% 异步电动机矢量控制仿真主程序
% 文件名: run_foc_simulation.m

clear all; close all; clc;

%% 1. 电机参数设置
motor_params.Rs = 1.405;      % 定子电阻 (Ω)
motor_params.Rr = 1.395;      % 转子电阻 (Ω)
motor_params.Ls = 0.005839;   % 定子电感 (H)
motor_params.Lr = 0.005839;   % 转子电感 (H)
motor_params.Lm = 0.1722;     % 互感 (H)
motor_params.J = 0.01;        % 转动惯量 (kg·m²)
motor_params.B = 0.001;       % 阻尼系数 (N·m·s/rad)
motor_params.P = 4;           % 极对数
motor_params.fn = 50;         % 额定频率 (Hz)
motor_params.Un = 380;        % 额定电压 (V)
motor_params.In = 7.8;        % 额定电流 (A)
motor_params.n_n = 1450;      % 额定转速 (rpm)

%% 2. 控制器参数设置
ctrl_params.Ts = 1e-4;        % 采样时间 (s)
ctrl_params.f_pwm = 10e3;     % PWM频率 (Hz)
ctrl_params.Vdc = 600;        % 直流母线电压 (V)

% PI控制器参数
ctrl_params.Kp_speed = 1.5;   % 速度环比例系数
ctrl_params.Ki_speed = 0.1;   % 速度环积分系数
ctrl_params.Kp_id = 10;       % d轴电流环比例系数
ctrl_params.Ki_id = 1000;     % d轴电流环积分系数
ctrl_params.Kp_iq = 10;       % q轴电流环比例系数
ctrl_params.Ki_iq = 1000;     % q轴电流环积分系数

% 限幅设置
ctrl_params.id_max = 10;      % d轴电流最大限幅 (A)
ctrl_params.iq_max = 15;      % q轴电流最大限幅 (A)
ctrl_params.torque_max = 20;  % 最大转矩 (N·m)
ctrl_params.speed_max = 2000; % 最大转速 (rpm)

%% 3. 仿真条件设置
sim_params.sim_time = 2.0;    % 仿真时间 (s)
sim_params.speed_ref = 1000;  % 转速给定 (rpm)
sim_params.load_torque = 5;   % 负载转矩 (N·m)
sim_params.load_time = 1.0;   % 加载时间 (s)

%% 4. 运行Simulink仿真
% 将参数传递到工作空间
assignin('base', 'motor_params', motor_params);
assignin('base', 'ctrl_params', ctrl_params);
assignin('base', 'sim_params', sim_params);

% 运行仿真
sim('induction_motor_foc_sim.slx');

%% 5. 结果分析与可视化
figure('Position', [100, 100, 1200, 800]);

% 子图1:转速响应
subplot(3, 3, 1);
plot(speed_data.Time, speed_data.Data(:,1), 'b-', 'LineWidth', 2);
hold on;
plot(speed_data.Time, speed_ref_data.Data, 'r--', 'LineWidth', 1.5);
xlabel('时间 (s)'); ylabel('转速 (rpm)');
title('转速响应曲线');
legend('实际转速', '给定转速', 'Location', 'best');
grid on;

% 子图2:三相电流
subplot(3, 3, 2);
plot(current_data.Time, current_data.Data(:,1), 'r-', 'LineWidth', 1);
hold on;
plot(current_data.Time, current_data.Data(:,2), 'g-', 'LineWidth', 1);
plot(current_data.Time, current_data.Data(:,3), 'b-', 'LineWidth', 1);
xlabel('时间 (s)'); ylabel('电流 (A)');
title('三相定子电流');
legend('Ia', 'Ib', 'Ic');
grid on;

% 子图3:dq轴电流
subplot(3, 3, 3);
plot(idq_data.Time, idq_data.Data(:,1), 'r-', 'LineWidth', 2);
hold on;
plot(idq_data.Time, idq_data.Data(:,2), 'b-', 'LineWidth', 2);
xlabel('时间 (s)'); ylabel('电流 (A)');
title('dq轴电流');
legend('Id (励磁电流)', 'Iq (转矩电流)');
grid on;

% 子图4:电磁转矩
subplot(3, 3, 4);
plot(torque_data.Time, torque_data.Data, 'm-', 'LineWidth', 2);
hold on;
plot([0 sim_params.sim_time], [sim_params.load_torque sim_params.load_torque], 'r--', 'LineWidth', 1.5);
xlabel('时间 (s)'); ylabel('转矩 (N·m)');
title('电磁转矩');
legend('电磁转矩', '负载转矩');
grid on;

% 子图5:转子磁链
subplot(3, 3, 5);
plot(flux_data.Time, flux_data.Data, 'g-', 'LineWidth', 2);
xlabel('时间 (s)'); ylabel('磁链 (Wb)');
title('转子磁链幅值');
grid on;

% 子图6:电流轨迹
subplot(3, 3, 6);
plot(idq_data.Data(:,1), idq_data.Data(:,2), 'b-', 'LineWidth', 1.5);
xlabel('Id (A)'); ylabel('Iq (A)');
title('电流矢量轨迹');
grid on;
axis equal;

% 子图7:电压空间矢量
subplot(3, 3, 7);
plot(uvw_data.Time(1:200), uvw_data.Data(1:200,1), 'r-', 'LineWidth', 1);
hold on;
plot(uvw_data.Time(1:200), uvw_data.Data(1:200,2), 'g-', 'LineWidth', 1);
plot(uvw_data.Time(1:200), uvw_data.Data(1:200,3), 'b-', 'LineWidth', 1);
xlabel('时间 (s)'); ylabel('电压 (V)');
title('三相电压波形(局部)');
legend('Ua', 'Ub', 'Uc');
grid on;

% 子图8:功率分析
subplot(3, 3, 8);
plot(power_data.Time, power_data.Data(:,1), 'r-', 'LineWidth', 2);
hold on;
plot(power_data.Time, power_data.Data(:,2), 'b-', 'LineWidth', 2);
xlabel('时间 (s)'); ylabel('功率 (W)');
title('功率变化');
legend('输入功率', '输出功率');
grid on;

% 子图9:效率曲线
subplot(3, 3, 9);
efficiency = power_data.Data(:,2) ./ (power_data.Data(:,1) + eps) * 100;
plot(power_data.Time, efficiency, 'k-', 'LineWidth', 2);
xlabel('时间 (s)'); ylabel('效率 (%)');
title('系统效率');
grid on;
ylim([0 100]);

%% 6. 性能指标计算
% 稳态误差计算
steady_state_time = 1.5;  % 稳态开始时间
idx = find(speed_data.Time >= steady_state_time);
speed_steady = speed_data.Data(idx, 1);
speed_ref_steady = speed_ref_data.Data(idx);

speed_error = abs(mean(speed_steady) - mean(speed_ref_steady));
speed_error_percent = speed_error / mean(speed_ref_steady) * 100;

% 动态性能计算
% 上升时间
speed_target = 0.9 * sim_params.speed_ref;
rise_idx = find(speed_data.Data >= speed_target, 1);
if ~isempty(rise_idx)
    rise_time = speed_data.Time(rise_idx);
else
    rise_time = NaN;
end

% 超调量
overshoot = (max(speed_data.Data) - sim_params.speed_ref) / sim_params.speed_ref * 100;

% 转矩脉动
torque_steady = torque_data.Data(idx);
torque_ripple = (max(torque_steady) - min(torque_steady)) / mean(torque_steady) * 100;

fprintf('\n========== 性能指标分析 ==========\n');
fprintf('稳态转速误差: %.2f rpm (%.2f%%)\n', speed_error, speed_error_percent);
fprintf('上升时间: %.3f s\n', rise_time);
fprintf('转速超调量: %.2f%%\n', overshoot);
fprintf('转矩脉动: %.2f%%\n', torque_ripple);
fprintf('平均效率: %.2f%%\n', mean(efficiency(idx)));

四、调试与优化建议

1. PI参数整定方法

%% PI参数自动整定函数
function [Kp_opt, Ki_opt] = auto_tune_pi(plant_model, target_bandwidth, phase_margin)
    % 基于频域法的PI参数整定
    % plant_model: 被控对象传递函数
    % target_bandwidth: 目标带宽 (rad/s)
    % phase_margin: 目标相位裕度 (度)
    
    % 初始参数
    Kp0 = 0.1;
    Ki0 = 1;
    
    % 优化目标函数
    cost_func = @(params) evaluate_pi_performance(params, plant_model, ...
                                                  target_bandwidth, phase_margin);
    
    % 使用优化算法
    options = optimset('Display', 'iter', 'MaxIter', 50);
    params_opt = fminsearch(cost_func, [Kp0, Ki0], options);
    
    Kp_opt = params_opt(1);
    Ki_opt = params_opt(2);
end

function cost = evaluate_pi_performance(params, plant, target_bw, target_pm)
    Kp = params(1);
    Ki = params(2);
    
    % PI控制器传递函数
    pi_ctrl = tf([Kp, Ki], [1, 0]);
    
    % 开环传递函数
    open_loop = series(pi_ctrl, plant);
    
    % 计算频域指标
    [mag, phase, w] = bode(open_loop);
    mag_db = 20*log10(squeeze(mag));
    phase_deg = squeeze(phase);
    
    % 找到带宽频率
    idx_bw = find(mag_db <= 0, 1);
    if isempty(idx_bw)
        bw = inf;
    else
        bw = w(idx_bw);
    end
    
    % 找到相位裕度
    [~, idx_pm] = min(abs(mag_db - 0));
    pm = 180 + phase_deg(idx_pm);
    
    % 计算代价函数
    cost = abs(log(bw/target_bw)) + 0.1*abs(pm - target_pm);
end

2. 鲁棒性测试

%% 鲁棒性测试脚本
function robustness_test()
    % 测试参数变化时的系统鲁棒性
    
    % 基础参数
    base_params = get_motor_params();
    
    % 参数变化范围
    R_variation = [0.5, 1.0, 1.5];    % 电阻变化比例
    L_variation = [0.8, 1.0, 1.2];    % 电感变化比例
    J_variation = [0.5, 1.0, 2.0];    % 惯量变化比例
    
    results = struct();
    
    for i = 1:length(R_variation)
        for j = 1:length(L_variation)
            for k = 1:length(J_variation)
                % 修改参数
                test_params = base_params;
                test_params.Rs = base_params.Rs * R_variation(i);
                test_params.Rr = base_params.Rr * R_variation(i);
                test_params.Ls = base_params.Ls * L_variation(j);
                test_params.Lr = base_params.Lr * L_variation(j);
                test_params.J = base_params.J * J_variation(k);
                
                % 运行仿真
                [speed_error, torque_ripple] = run_single_test(test_params);
                
                % 保存结果
                results(i,j,k).params = test_params;
                results(i,j,k).speed_error = speed_error;
                results(i,j,k).torque_ripple = torque_ripple;
            end
        end
    end
    
    % 分析鲁棒性
    analyze_robustness(results);
end

五、高级功能扩展

1. 无速度传感器控制

function [wr_est, theta_e_est] = speed_sensorless_observer(us_alpha, us_beta, is_alpha, is_beta, Rs, Ls, Lr, Lm, Ts)
    % MRAS(模型参考自适应)速度观测器
    
    persistent is_alpha_prev is_beta_prev psi_r_alpha_prev psi_r_beta_prev;
    
    if isempty(is_alpha_prev)
        is_alpha_prev = 0; is_beta_prev = 0;
        psi_r_alpha_prev = 0; psi_r_beta_prev = 0;
    end
    
    % 电机参数
    sigma = 1 - Lm^2/(Ls*Lr);
    Tr = Lr/Rr;
    gamma = Lm/(sigma*Ls*Lr);
    
    % 参考模型(电压模型)
    psi_s_alpha = psi_s_alpha_prev + Ts*(us_alpha - Rs*is_alpha);
    psi_s_beta = psi_s_beta_prev + Ts*(us_beta - Rs*is_beta);
    
    psi_r_alpha_ref = (Lr/Lm)*(psi_s_alpha - sigma*Ls*is_alpha);
    psi_r_beta_ref = (Lr/Lm)*(psi_s_beta - sigma*Ls*is_beta);
    
    % 可调模型(电流模型)
    dpsi_r_alpha = (-1/Tr)*psi_r_alpha_prev - wr_est*psi_r_beta_prev + (Lm/Tr)*is_alpha_prev;
    dpsi_r_beta = wr_est*psi_r_alpha_prev + (-1/Tr)*psi_r_beta_prev + (Lm/Tr)*is_beta_prev;
    
    psi_r_alpha_adj = psi_r_alpha_prev + Ts*dpsi_r_alpha;
    psi_r_beta_adj = psi_r_beta_prev + Ts*dpsi_r_beta;
    
    % 自适应律(PI调节器)
    error = (psi_r_alpha_ref*psi_r_beta_adj - psi_r_beta_ref*psi_r_alpha_adj);
    
    Kp_mras = 10;
    Ki_mras = 100;
    
    persistent error_integral;
    if isempty(error_integral)
        error_integral = 0;
    end
    
    error_integral = error_integral + error*Ts;
    wr_est = Kp_mras*error + Ki_mras*error_integral;
    
    % 计算电角度
    theta_e_est = atan2(psi_r_beta_ref, psi_r_alpha_ref);
    
    % 更新状态
    is_alpha_prev = is_alpha;
    is_beta_prev = is_beta;
    psi_r_alpha_prev = psi_r_alpha_adj;
    psi_r_beta_prev = psi_r_beta_adj;
    psi_s_alpha_prev = psi_s_alpha;
    psi_s_beta_prev = psi_s_beta;
end

2. 弱磁控制

function [id_ref, iq_ref] = field_weakening_control(speed, speed_base, id_rated, iq_rated, Vdc, Ls)
    % 弱磁控制策略
    % 当转速超过基速时,减弱磁场以扩展调速范围
    
    % 电压极限椭圆
    Vmax = Vdc/sqrt(3);
    
    % 电流极限圆
    Imax = sqrt(id_rated^2 + iq_rated^2);
    
    % 基速以上弱磁
    if speed > speed_base
        % 计算最大可用电压
        V_available = Vmax - speed * Ls * iq_rated;
        
        % 计算弱磁后的d轴电流
        id_ref = -sqrt((V_available/(speed*Ls))^2 - iq_ref^2);
    else
        id_ref = id_rated;
    end
    
    % 确保在电流极限内
    current_mag = sqrt(id_ref^2 + iq_ref^2);
    if current_mag > Imax
        scale = Imax / current_mag;
        id_ref = id_ref * scale;
        iq_ref = iq_ref * scale;
    end
end

参考代码 交流异步电动机矢量控制MATLAB/simulink仿真 www.3dddown.com/cna/96966.html

六、仿真技巧与注意事项

  1. 仿真步长选择

    • PWM频率10kHz → 仿真步长建议10μs
    • 使用变步长求解器ode23tb或ode15s
  2. 收敛性问题

    • 初始给定量要合理
    • PI参数需要仔细整定
    • 可以添加软启动策略
  3. 性能优化

    • 使用向量化计算
    • 合理设置仿真精度
    • 使用加速模式(Rapid Accelerator)
posted @ 2026-01-04 17:30  bqyfa66984  阅读(47)  评论(0)    收藏  举报