异步电动机矢量控制MATLAB/Simulink仿真方案
异步电动机矢量控制MATLAB/Simulink仿真方案。矢量控制(Vector Control)也称为磁场定向控制(FOC),是高性能交流调速的核心技术。
一、基础理论回顾
异步电动机矢量控制基本原理:
- 坐标变换:三相静止→两相旋转(dq坐标系)
- 解耦控制:将定子电流分解为励磁分量(Id)和转矩分量(Iq)
- 磁场定向:保持转子磁链恒定,实现类似直流电机的控制
二、Simulink仿真模型构建
1. 主仿真模型框架
%% 异步电动机矢量控制主仿真模型
% 文件名: induction_motor_foc_sim.slx
% 主要模块组成:
% 1. 速度/转矩给定模块
% 2. PI调节器(速度环、电流环)
% 3. 坐标变换模块(Clark、Park、反Park)
% 4. SVPWM调制模块
% 5. 逆变器模块
% 6. 异步电动机模块
% 7. 测量与观测模块
2. 核心模块详细实现
2.1 坐标变换模块(MATLAB Function)
% Clark变换(三相静止→两相静止)
function [ialpha, ibeta] = clarke_transform(ia, ib, ic)
% Clark变换
% 输入:三相电流 ia, ib, ic
% 输出:两相静止坐标系电流 ialpha, ibeta
ialpha = ia;
ibeta = (ia + 2*ib) / sqrt(3);
end
% Park变换(两相静止→两相旋转)
function [id, iq] = park_transform(ialpha, ibeta, theta)
% Park变换
% 输入:ialpha, ibeta, 旋转角度 theta
% 输出:dq坐标系电流 id, iq
id = ialpha * cos(theta) + ibeta * sin(theta);
iq = -ialpha * sin(theta) + ibeta * cos(theta);
end
% 反Park变换(两相旋转→两相静止)
function [ualpha, ubeta] = inv_park_transform(ud, uq, theta)
% 反Park变换
% 输入:dq坐标系电压 ud, uq, 旋转角度 theta
% 输出:两相静止坐标系电压 ualpha, ubeta
ualpha = ud * cos(theta) - uq * sin(theta);
ubeta = ud * sin(theta) + uq * cos(theta);
end
2.2 磁链观测器模块
function [psi_r_alpha, psi_r_beta, theta_e, wr] = flux_observer(u_alpha, u_beta, i_alpha, i_beta, Rs, Ls, Lm, Lr, Ts)
% 基于电压模型的磁链观测器
% 输入:定子电压、电流,电机参数,采样时间
% 输出:转子磁链、电角度、电角速度
persistent psi_s_alpha_prev psi_s_beta_prev;
persistent psi_r_alpha_prev psi_r_beta_prev;
if isempty(psi_s_alpha_prev)
psi_s_alpha_prev = 0;
psi_s_beta_prev = 0;
psi_r_alpha_prev = 0;
psi_r_beta_prev = 0;
end
% 定子磁链观测(电压模型)
psi_s_alpha = psi_s_alpha_prev + Ts * (u_alpha - Rs * i_alpha);
psi_s_beta = psi_s_beta_prev + Ts * (u_beta - Rs * i_beta);
% 转子磁链计算
sigma = 1 - Lm^2/(Ls*Lr); % 漏磁系数
L_sigma = sigma * Ls;
psi_r_alpha = (Lr/Lm) * (psi_s_alpha - L_sigma * i_alpha);
psi_r_beta = (Lr/Lm) * (psi_s_beta - L_sigma * i_beta);
% 计算电角度和角速度
theta_e = atan2(psi_r_beta, psi_r_alpha);
% 角速度计算(差分法)
if psi_r_alpha_prev ~= 0 || psi_r_beta_prev ~= 0
wr = (psi_r_alpha * (psi_r_beta - psi_r_beta_prev) - ...
psi_r_beta * (psi_r_alpha - psi_r_alpha_prev)) / ...
(psi_r_alpha^2 + psi_r_beta^2) / Ts;
else
wr = 0;
end
% 更新状态
psi_s_alpha_prev = psi_s_alpha;
psi_s_beta_prev = psi_s_beta;
psi_r_alpha_prev = psi_r_alpha;
psi_r_beta_prev = psi_r_beta;
end
2.3 SVPWM模块
function [Ta, Tb, Tc, T1, T2, sector] = svpwm(u_alpha, u_beta, Vdc, Ts)
% 空间矢量脉宽调制(SVPWM)
% 输入:αβ电压,直流母线电压,采样周期
% 输出:三相占空比,作用时间,扇区号
% 标准化电压
u_alpha_ref = u_alpha / (Vdc/2);
u_beta_ref = u_beta / (Vdc/2);
% 扇区判断
Uref1 = u_beta_ref;
Uref2 = (sqrt(3)*u_alpha_ref - u_beta_ref)/2;
Uref3 = (-sqrt(3)*u_alpha_ref - u_beta_ref)/2;
sector = 0;
if Uref1 > 0
sector = sector + 1;
end
if Uref2 > 0
sector = sector + 2;
end
if Uref3 > 0
sector = sector + 4;
end
% 扇区与作用时间映射
switch sector
case 1 % 扇区I
X = sqrt(3) * Ts * u_beta_ref;
Y = sqrt(3) * Ts * (sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
Z = sqrt(3) * Ts * (-sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
T1 = -Z;
T2 = X;
case 2 % 扇区II
X = sqrt(3) * Ts * (sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
Y = sqrt(3) * Ts * (-sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
Z = -sqrt(3) * Ts * u_beta_ref;
T1 = X;
T2 = Y;
case 3 % 扇区III
X = sqrt(3) * Ts * u_alpha_ref;
Y = sqrt(3) * Ts * (u_alpha_ref/2 + sqrt(3)*u_beta_ref/2);
Z = sqrt(3) * Ts * (-u_alpha_ref/2 + sqrt(3)*u_beta_ref/2);
T1 = -Z;
T2 = -X;
case 4 % 扇区IV
X = -sqrt(3) * Ts * u_alpha_ref;
Y = sqrt(3) * Ts * (u_alpha_ref/2 - sqrt(3)*u_beta_ref/2);
Z = sqrt(3) * Ts * (u_alpha_ref/2 + sqrt(3)*u_beta_ref/2);
T1 = X;
T2 = Z;
case 5 % 扇区V
X = -sqrt(3) * Ts * (sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
Y = sqrt(3) * Ts * (sqrt(3)*u_alpha_ref/2 - u_beta_ref/2);
Z = sqrt(3) * Ts * u_beta_ref;
T1 = -Y;
T2 = -X;
case 6 % 扇区VI
X = -sqrt(3) * Ts * (-sqrt(3)*u_alpha_ref/2 + u_beta_ref/2);
Y = -sqrt(3) * Ts * u_alpha_ref;
Z = sqrt(3) * Ts * (u_alpha_ref/2 + sqrt(3)*u_beta_ref/2);
T1 = Y;
T2 = -Z;
otherwise
T1 = 0;
T2 = 0;
end
% 限制作用时间
T1 = min(max(T1, 0), Ts);
T2 = min(max(T2, 0), Ts);
T0 = Ts - T1 - T2;
if T0 < 0
T1 = T1 * Ts/(T1 + T2);
T2 = T2 * Ts/(T1 + T2);
T0 = 0;
end
% 计算三相作用时间
switch sector
case 1
Ta = (T0/2 + T1 + T2)/Ts;
Tb = (T0/2 + T2)/Ts;
Tc = (T0/2)/Ts;
case 2
Ta = (T0/2 + T1)/Ts;
Tb = (T0/2 + T1 + T2)/Ts;
Tc = (T0/2)/Ts;
case 3
Ta = (T0/2)/Ts;
Tb = (T0/2 + T1 + T2)/Ts;
Tc = (T0/2 + T2)/Ts;
case 4
Ta = (T0/2)/Ts;
Tb = (T0/2 + T1)/Ts;
Tc = (T0/2 + T1 + T2)/Ts;
case 5
Ta = (T0/2 + T2)/Ts;
Tb = (T0/2)/Ts;
Tc = (T0/2 + T1 + T2)/Ts;
case 6
Ta = (T0/2 + T1 + T2)/Ts;
Tb = (T0/2)/Ts;
Tc = (T0/2 + T1)/Ts;
otherwise
Ta = 0.5; Tb = 0.5; Tc = 0.5;
end
end
3. PI控制器模块
function output = pi_controller(error, Kp, Ki, Ts, limit_min, limit_max)
% 带抗饱和的PI控制器
% 输入:误差,比例系数,积分系数,采样时间,输出限幅
persistent integral_prev;
if isempty(integral_prev)
integral_prev = 0;
end
% 比例项
proportional = Kp * error;
% 积分项
integral = integral_prev + Ki * error * Ts;
% 抗饱和处理
output_temp = proportional + integral;
if output_temp > limit_max
output = limit_max;
% 积分抗饱和:只有误差与输出同方向时才积分
if error < 0
integral_prev = integral;
end
elseif output_temp < limit_min
output = limit_min;
if error > 0
integral_prev = integral;
end
else
output = output_temp;
integral_prev = integral;
end
end
三、完整的仿真脚本
%% 异步电动机矢量控制仿真主程序
% 文件名: run_foc_simulation.m
clear all; close all; clc;
%% 1. 电机参数设置
motor_params.Rs = 1.405; % 定子电阻 (Ω)
motor_params.Rr = 1.395; % 转子电阻 (Ω)
motor_params.Ls = 0.005839; % 定子电感 (H)
motor_params.Lr = 0.005839; % 转子电感 (H)
motor_params.Lm = 0.1722; % 互感 (H)
motor_params.J = 0.01; % 转动惯量 (kg·m²)
motor_params.B = 0.001; % 阻尼系数 (N·m·s/rad)
motor_params.P = 4; % 极对数
motor_params.fn = 50; % 额定频率 (Hz)
motor_params.Un = 380; % 额定电压 (V)
motor_params.In = 7.8; % 额定电流 (A)
motor_params.n_n = 1450; % 额定转速 (rpm)
%% 2. 控制器参数设置
ctrl_params.Ts = 1e-4; % 采样时间 (s)
ctrl_params.f_pwm = 10e3; % PWM频率 (Hz)
ctrl_params.Vdc = 600; % 直流母线电压 (V)
% PI控制器参数
ctrl_params.Kp_speed = 1.5; % 速度环比例系数
ctrl_params.Ki_speed = 0.1; % 速度环积分系数
ctrl_params.Kp_id = 10; % d轴电流环比例系数
ctrl_params.Ki_id = 1000; % d轴电流环积分系数
ctrl_params.Kp_iq = 10; % q轴电流环比例系数
ctrl_params.Ki_iq = 1000; % q轴电流环积分系数
% 限幅设置
ctrl_params.id_max = 10; % d轴电流最大限幅 (A)
ctrl_params.iq_max = 15; % q轴电流最大限幅 (A)
ctrl_params.torque_max = 20; % 最大转矩 (N·m)
ctrl_params.speed_max = 2000; % 最大转速 (rpm)
%% 3. 仿真条件设置
sim_params.sim_time = 2.0; % 仿真时间 (s)
sim_params.speed_ref = 1000; % 转速给定 (rpm)
sim_params.load_torque = 5; % 负载转矩 (N·m)
sim_params.load_time = 1.0; % 加载时间 (s)
%% 4. 运行Simulink仿真
% 将参数传递到工作空间
assignin('base', 'motor_params', motor_params);
assignin('base', 'ctrl_params', ctrl_params);
assignin('base', 'sim_params', sim_params);
% 运行仿真
sim('induction_motor_foc_sim.slx');
%% 5. 结果分析与可视化
figure('Position', [100, 100, 1200, 800]);
% 子图1:转速响应
subplot(3, 3, 1);
plot(speed_data.Time, speed_data.Data(:,1), 'b-', 'LineWidth', 2);
hold on;
plot(speed_data.Time, speed_ref_data.Data, 'r--', 'LineWidth', 1.5);
xlabel('时间 (s)'); ylabel('转速 (rpm)');
title('转速响应曲线');
legend('实际转速', '给定转速', 'Location', 'best');
grid on;
% 子图2:三相电流
subplot(3, 3, 2);
plot(current_data.Time, current_data.Data(:,1), 'r-', 'LineWidth', 1);
hold on;
plot(current_data.Time, current_data.Data(:,2), 'g-', 'LineWidth', 1);
plot(current_data.Time, current_data.Data(:,3), 'b-', 'LineWidth', 1);
xlabel('时间 (s)'); ylabel('电流 (A)');
title('三相定子电流');
legend('Ia', 'Ib', 'Ic');
grid on;
% 子图3:dq轴电流
subplot(3, 3, 3);
plot(idq_data.Time, idq_data.Data(:,1), 'r-', 'LineWidth', 2);
hold on;
plot(idq_data.Time, idq_data.Data(:,2), 'b-', 'LineWidth', 2);
xlabel('时间 (s)'); ylabel('电流 (A)');
title('dq轴电流');
legend('Id (励磁电流)', 'Iq (转矩电流)');
grid on;
% 子图4:电磁转矩
subplot(3, 3, 4);
plot(torque_data.Time, torque_data.Data, 'm-', 'LineWidth', 2);
hold on;
plot([0 sim_params.sim_time], [sim_params.load_torque sim_params.load_torque], 'r--', 'LineWidth', 1.5);
xlabel('时间 (s)'); ylabel('转矩 (N·m)');
title('电磁转矩');
legend('电磁转矩', '负载转矩');
grid on;
% 子图5:转子磁链
subplot(3, 3, 5);
plot(flux_data.Time, flux_data.Data, 'g-', 'LineWidth', 2);
xlabel('时间 (s)'); ylabel('磁链 (Wb)');
title('转子磁链幅值');
grid on;
% 子图6:电流轨迹
subplot(3, 3, 6);
plot(idq_data.Data(:,1), idq_data.Data(:,2), 'b-', 'LineWidth', 1.5);
xlabel('Id (A)'); ylabel('Iq (A)');
title('电流矢量轨迹');
grid on;
axis equal;
% 子图7:电压空间矢量
subplot(3, 3, 7);
plot(uvw_data.Time(1:200), uvw_data.Data(1:200,1), 'r-', 'LineWidth', 1);
hold on;
plot(uvw_data.Time(1:200), uvw_data.Data(1:200,2), 'g-', 'LineWidth', 1);
plot(uvw_data.Time(1:200), uvw_data.Data(1:200,3), 'b-', 'LineWidth', 1);
xlabel('时间 (s)'); ylabel('电压 (V)');
title('三相电压波形(局部)');
legend('Ua', 'Ub', 'Uc');
grid on;
% 子图8:功率分析
subplot(3, 3, 8);
plot(power_data.Time, power_data.Data(:,1), 'r-', 'LineWidth', 2);
hold on;
plot(power_data.Time, power_data.Data(:,2), 'b-', 'LineWidth', 2);
xlabel('时间 (s)'); ylabel('功率 (W)');
title('功率变化');
legend('输入功率', '输出功率');
grid on;
% 子图9:效率曲线
subplot(3, 3, 9);
efficiency = power_data.Data(:,2) ./ (power_data.Data(:,1) + eps) * 100;
plot(power_data.Time, efficiency, 'k-', 'LineWidth', 2);
xlabel('时间 (s)'); ylabel('效率 (%)');
title('系统效率');
grid on;
ylim([0 100]);
%% 6. 性能指标计算
% 稳态误差计算
steady_state_time = 1.5; % 稳态开始时间
idx = find(speed_data.Time >= steady_state_time);
speed_steady = speed_data.Data(idx, 1);
speed_ref_steady = speed_ref_data.Data(idx);
speed_error = abs(mean(speed_steady) - mean(speed_ref_steady));
speed_error_percent = speed_error / mean(speed_ref_steady) * 100;
% 动态性能计算
% 上升时间
speed_target = 0.9 * sim_params.speed_ref;
rise_idx = find(speed_data.Data >= speed_target, 1);
if ~isempty(rise_idx)
rise_time = speed_data.Time(rise_idx);
else
rise_time = NaN;
end
% 超调量
overshoot = (max(speed_data.Data) - sim_params.speed_ref) / sim_params.speed_ref * 100;
% 转矩脉动
torque_steady = torque_data.Data(idx);
torque_ripple = (max(torque_steady) - min(torque_steady)) / mean(torque_steady) * 100;
fprintf('\n========== 性能指标分析 ==========\n');
fprintf('稳态转速误差: %.2f rpm (%.2f%%)\n', speed_error, speed_error_percent);
fprintf('上升时间: %.3f s\n', rise_time);
fprintf('转速超调量: %.2f%%\n', overshoot);
fprintf('转矩脉动: %.2f%%\n', torque_ripple);
fprintf('平均效率: %.2f%%\n', mean(efficiency(idx)));
四、调试与优化建议
1. PI参数整定方法
%% PI参数自动整定函数
function [Kp_opt, Ki_opt] = auto_tune_pi(plant_model, target_bandwidth, phase_margin)
% 基于频域法的PI参数整定
% plant_model: 被控对象传递函数
% target_bandwidth: 目标带宽 (rad/s)
% phase_margin: 目标相位裕度 (度)
% 初始参数
Kp0 = 0.1;
Ki0 = 1;
% 优化目标函数
cost_func = @(params) evaluate_pi_performance(params, plant_model, ...
target_bandwidth, phase_margin);
% 使用优化算法
options = optimset('Display', 'iter', 'MaxIter', 50);
params_opt = fminsearch(cost_func, [Kp0, Ki0], options);
Kp_opt = params_opt(1);
Ki_opt = params_opt(2);
end
function cost = evaluate_pi_performance(params, plant, target_bw, target_pm)
Kp = params(1);
Ki = params(2);
% PI控制器传递函数
pi_ctrl = tf([Kp, Ki], [1, 0]);
% 开环传递函数
open_loop = series(pi_ctrl, plant);
% 计算频域指标
[mag, phase, w] = bode(open_loop);
mag_db = 20*log10(squeeze(mag));
phase_deg = squeeze(phase);
% 找到带宽频率
idx_bw = find(mag_db <= 0, 1);
if isempty(idx_bw)
bw = inf;
else
bw = w(idx_bw);
end
% 找到相位裕度
[~, idx_pm] = min(abs(mag_db - 0));
pm = 180 + phase_deg(idx_pm);
% 计算代价函数
cost = abs(log(bw/target_bw)) + 0.1*abs(pm - target_pm);
end
2. 鲁棒性测试
%% 鲁棒性测试脚本
function robustness_test()
% 测试参数变化时的系统鲁棒性
% 基础参数
base_params = get_motor_params();
% 参数变化范围
R_variation = [0.5, 1.0, 1.5]; % 电阻变化比例
L_variation = [0.8, 1.0, 1.2]; % 电感变化比例
J_variation = [0.5, 1.0, 2.0]; % 惯量变化比例
results = struct();
for i = 1:length(R_variation)
for j = 1:length(L_variation)
for k = 1:length(J_variation)
% 修改参数
test_params = base_params;
test_params.Rs = base_params.Rs * R_variation(i);
test_params.Rr = base_params.Rr * R_variation(i);
test_params.Ls = base_params.Ls * L_variation(j);
test_params.Lr = base_params.Lr * L_variation(j);
test_params.J = base_params.J * J_variation(k);
% 运行仿真
[speed_error, torque_ripple] = run_single_test(test_params);
% 保存结果
results(i,j,k).params = test_params;
results(i,j,k).speed_error = speed_error;
results(i,j,k).torque_ripple = torque_ripple;
end
end
end
% 分析鲁棒性
analyze_robustness(results);
end
五、高级功能扩展
1. 无速度传感器控制
function [wr_est, theta_e_est] = speed_sensorless_observer(us_alpha, us_beta, is_alpha, is_beta, Rs, Ls, Lr, Lm, Ts)
% MRAS(模型参考自适应)速度观测器
persistent is_alpha_prev is_beta_prev psi_r_alpha_prev psi_r_beta_prev;
if isempty(is_alpha_prev)
is_alpha_prev = 0; is_beta_prev = 0;
psi_r_alpha_prev = 0; psi_r_beta_prev = 0;
end
% 电机参数
sigma = 1 - Lm^2/(Ls*Lr);
Tr = Lr/Rr;
gamma = Lm/(sigma*Ls*Lr);
% 参考模型(电压模型)
psi_s_alpha = psi_s_alpha_prev + Ts*(us_alpha - Rs*is_alpha);
psi_s_beta = psi_s_beta_prev + Ts*(us_beta - Rs*is_beta);
psi_r_alpha_ref = (Lr/Lm)*(psi_s_alpha - sigma*Ls*is_alpha);
psi_r_beta_ref = (Lr/Lm)*(psi_s_beta - sigma*Ls*is_beta);
% 可调模型(电流模型)
dpsi_r_alpha = (-1/Tr)*psi_r_alpha_prev - wr_est*psi_r_beta_prev + (Lm/Tr)*is_alpha_prev;
dpsi_r_beta = wr_est*psi_r_alpha_prev + (-1/Tr)*psi_r_beta_prev + (Lm/Tr)*is_beta_prev;
psi_r_alpha_adj = psi_r_alpha_prev + Ts*dpsi_r_alpha;
psi_r_beta_adj = psi_r_beta_prev + Ts*dpsi_r_beta;
% 自适应律(PI调节器)
error = (psi_r_alpha_ref*psi_r_beta_adj - psi_r_beta_ref*psi_r_alpha_adj);
Kp_mras = 10;
Ki_mras = 100;
persistent error_integral;
if isempty(error_integral)
error_integral = 0;
end
error_integral = error_integral + error*Ts;
wr_est = Kp_mras*error + Ki_mras*error_integral;
% 计算电角度
theta_e_est = atan2(psi_r_beta_ref, psi_r_alpha_ref);
% 更新状态
is_alpha_prev = is_alpha;
is_beta_prev = is_beta;
psi_r_alpha_prev = psi_r_alpha_adj;
psi_r_beta_prev = psi_r_beta_adj;
psi_s_alpha_prev = psi_s_alpha;
psi_s_beta_prev = psi_s_beta;
end
2. 弱磁控制
function [id_ref, iq_ref] = field_weakening_control(speed, speed_base, id_rated, iq_rated, Vdc, Ls)
% 弱磁控制策略
% 当转速超过基速时,减弱磁场以扩展调速范围
% 电压极限椭圆
Vmax = Vdc/sqrt(3);
% 电流极限圆
Imax = sqrt(id_rated^2 + iq_rated^2);
% 基速以上弱磁
if speed > speed_base
% 计算最大可用电压
V_available = Vmax - speed * Ls * iq_rated;
% 计算弱磁后的d轴电流
id_ref = -sqrt((V_available/(speed*Ls))^2 - iq_ref^2);
else
id_ref = id_rated;
end
% 确保在电流极限内
current_mag = sqrt(id_ref^2 + iq_ref^2);
if current_mag > Imax
scale = Imax / current_mag;
id_ref = id_ref * scale;
iq_ref = iq_ref * scale;
end
end
参考代码 交流异步电动机矢量控制MATLAB/simulink仿真 www.3dddown.com/cna/96966.html
六、仿真技巧与注意事项
-
仿真步长选择:
- PWM频率10kHz → 仿真步长建议10μs
- 使用变步长求解器ode23tb或ode15s
-
收敛性问题:
- 初始给定量要合理
- PI参数需要仔细整定
- 可以添加软启动策略
-
性能优化:
- 使用向量化计算
- 合理设置仿真精度
- 使用加速模式(Rapid Accelerator)
浙公网安备 33010602011771号