MATLAB 虹膜识别系统:基于霍夫变换的定位与分割
使用MATLAB实现的虹膜识别系统,利用霍夫变换进行虹膜定位和分割
classdef IrisRecognitionSystem
%IRISRECOGNITIONSYSTEM 虹膜识别系统类
% 使用霍夫变换进行虹膜定位和分割
properties
OriginalImage
GrayImage
ProcessedImage
PupilCircle
IrisCircle
NormalizedIris
end
methods
function obj = IrisRecognitionSystem()
%IRISRECOGNITIONSYSTEM 构造此类的实例
obj.PupilCircle = [];
obj.IrisCircle = [];
end
function obj = loadImage(obj, imagePath)
%LOADIMAGE 加载图像
obj.OriginalImage = imread(imagePath);
if size(obj.OriginalImage, 3) == 3
obj.GrayImage = rgb2gray(obj.OriginalImage);
else
obj.GrayImage = obj.OriginalImage;
end
figure, imshow(obj.OriginalImage), title('原始图像');
end
function obj = preprocessImage(obj)
%PREPROCESSIMAGE 图像预处理
% 应用中值滤波减少噪声
obj.ProcessedImage = medfilt2(obj.GrayImage, [5 5]);
% 对比度增强
obj.ProcessedImage = imadjust(obj.ProcessedImage);
figure, imshow(obj.ProcessedImage), title('预处理后的图像');
end
function obj = detectPupil(obj)
%DETECTPUPIL 使用霍夫变换检测瞳孔
% 二值化图像
threshold = graythresh(obj.ProcessedImage);
binaryImage = imbinarize(obj.ProcessedImage, threshold * 0.8);
binaryImage = imcomplement(binaryImage);
% 形态学操作
se = strel('disk', 3);
binaryImage = imopen(binaryImage, se);
binaryImage = imclose(binaryImage, se);
% 填充孔洞
binaryImage = imfill(binaryImage, 'holes');
% 边缘检测
edges = edge(binaryImage, 'canny');
% 霍夫变换检测圆
radii = 20:5:80; % 瞳孔半径范围
h = circle_hough(edges, radii, 'same', 'normalise');
% 找到最可能的圆
peaks = circle_houghpeaks(h, radii, 'nhoodxy', 15, 'nhoodr', 15, 'npeaks', 1);
if ~isempty(peaks)
obj.PupilCircle = peaks;
fprintf('检测到瞳孔: 中心(%d, %d), 半径%d\n', peaks(1), peaks(2), peaks(3));
% 绘制检测结果
figure, imshow(obj.OriginalImage);
hold on;
plot(peaks(1), peaks(2), 'r+', 'MarkerSize', 20, 'LineWidth', 2);
theta = 0:0.01:2*pi;
x = peaks(3) * cos(theta) + peaks(1);
y = peaks(3) * sin(theta) + peaks(2);
plot(x, y, 'r-', 'LineWidth', 2);
title('瞳孔检测结果');
hold off;
else
error('未能检测到瞳孔');
end
end
function obj = detectIris(obj)
%DETECTIRIS 使用霍夫变换检测虹膜边界
if isempty(obj.PupilCircle)
error('请先检测瞳孔');
end
% 创建感兴趣区域(ROI)掩码
[height, width] = size(obj.ProcessedImage);
[X, Y] = meshgrid(1:width, 1:height);
% 创建以瞳孔为中心的圆形掩码
pupilX = obj.PupilCircle(1);
pupilY = obj.PupilCircle(2);
mask = sqrt((X - pupilX).^2 + (Y - pupilY).^2) <= 150;
% 应用掩码
roiImage = obj.ProcessedImage;
roiImage(~mask) = 0;
% 边缘检测
edges = edge(roiImage, 'canny');
% 霍夫变换检测圆 (虹膜半径通常比瞳孔大)
radii = obj.PupilCircle(3)+30:5:150;
h = circle_hough(edges, radii, 'same', 'normalise');
% 找到最可能的圆
peaks = circle_houghpeaks(h, radii, 'nhoodxy', 15, 'nhoodr', 15, 'npeaks', 1);
if ~isempty(peaks)
obj.IrisCircle = peaks;
fprintf('检测到虹膜: 中心(%d, %d), 半径%d\n', peaks(1), peaks(2), peaks(3));
% 绘制检测结果
figure, imshow(obj.OriginalImage);
hold on;
% 绘制瞳孔
plot(obj.PupilCircle(1), obj.PupilCircle(2), 'r+', 'MarkerSize', 20, 'LineWidth', 2);
theta = 0:0.01:2*pi;
x_pupil = obj.PupilCircle(3) * cos(theta) + obj.PupilCircle(1);
y_pupil = obj.PupilCircle(3) * sin(theta) + obj.PupilCircle(2);
plot(x_pupil, y_pupil, 'r-', 'LineWidth', 2);
% 绘制虹膜
plot(peaks(1), peaks(2), 'g+', 'MarkerSize', 20, 'LineWidth', 2);
x_iris = peaks(3) * cos(theta) + peaks(1);
y_iris = peaks(3) * sin(theta) + peaks(2);
plot(x_iris, y_iris, 'g-', 'LineWidth', 2);
title('虹膜检测结果');
hold off;
else
error('未能检测到虹膜');
end
end
function obj = extractIris(obj)
%EXTRACTIRIS 提取并归一化虹膜区域
if isempty(obj.PupilCircle) || isempty(obj.IrisCircle)
error('请先检测瞳孔和虹膜');
end
% 创建极坐标网格
[height, width] = size(obj.ProcessedImage);
[X, Y] = meshgrid(1:width, 1:height);
% 计算每个点到瞳孔中心的距离和角度
dx = X - obj.PupilCircle(1);
dy = Y - obj.PupilCircle(2);
angles = atan2(dy, dx);
radii = sqrt(dx.^2 + dy.^2);
% 归一化参数
normalizedWidth = 256;
normalizedHeight = 64;
% 创建归一化虹膜图像
obj.NormalizedIris = zeros(normalizedHeight, normalizedWidth);
for y = 1:normalizedHeight
for x = 1:normalizedWidth
% 计算对应的极坐标
r = obj.PupilCircle(3) + (y/normalizedHeight) * ...
(obj.IrisCircle(3) - obj.PupilCircle(3));
theta = (x/normalizedWidth) * 2 * pi;
% 转换为笛卡尔坐标
x_cart = round(obj.PupilCircle(1) + r * cos(theta));
y_cart = round(obj.PupilCircle(2) + r * sin(theta));
% 确保坐标在图像范围内
if x_cart >= 1 && x_cart <= width && y_cart >= 1 && y_cart <= height
obj.NormalizedIris(y, x) = obj.ProcessedImage(y_cart, x_cart);
end
end
end
% 显示归一化虹膜
figure, imshow(obj.NormalizedIris), title('归一化虹膜');
% 增强对比度
obj.NormalizedIris = imadjust(obj.NormalizedIris);
figure, imshow(obj.NormalizedIris), title('增强后的归一化虹膜');
end
function features = extractFeatures(obj)
%EXTRACTFEATURES 从归一化虹膜中提取特征
if isempty(obj.NormalizedIris)
error('请先提取虹膜');
end
% 使用Gabor滤波器提取纹理特征
wavelength = 8;
orientation = 0:30:150;
g = gabor(wavelength, orientation);
% 应用Gabor滤波器
gabormag = imgaborfilt(obj.NormalizedIris, g);
% 显示Gabor滤波结果
figure;
for i = 1:length(g)
subplot(2,3,i), imshow(gabormag(:,:,i), []);
title(sprintf('方向 %d度', orientation(i)));
end
% 提取特征向量
features = [];
for i = 1:length(g)
mag = gabormag(:,:,i);
features = [features, mean(mag(:)), std(mag(:))];
end
fprintf('提取的特征向量: \n');
disp(features);
end
end
end
辅助函数
为了完整实现虹膜识别系统,您还需要以下辅助函数。这些函数应该保存在MATLAB路径中。
circle_hough.m
function [h, varargout] = circle_hough(b, r, varargin)
%CIRCLE_HOUGH Hough transform for circles
% [H, R] = CIRCLE_HOUGH(B, R) computes the Hough transform for circles
% of radii in the vector R in the binary image B.
%
% [H, R] = CIRCLE_HOUGH(B, R, OPTION1, VALUE1, ...) accepts additional
% options:
% 'same' - keep H the same size as B (default)
% 'normalise' - normalise the transform by the radius
% 参数处理
opts = struct('same', false, 'normalise', false);
if nargin > 2
opts = parse_args(opts, varargin);
end
% 初始化累加器
[h, w] = size(b);
n_r = length(r);
h = zeros(h, w, n_r);
% 找到所有边缘点
[y, x] = find(b);
% 对每个半径进行霍夫变换
for i = 1:n_r
radius = r(i);
% 创建圆模板
angles = 0:0.1:2*pi;
template_x = round(radius * cos(angles));
template_y = round(radius * sin(angles));
% 移除重复点
template = unique([template_x', template_y'], 'rows');
% 对每个边缘点投票
for j = 1:length(x)
centers_x = x(j) - template(:,1);
centers_y = y(j) - template(:,2);
% 移除超出图像边界的点
valid = centers_x >= 1 & centers_x <= w & centers_y >= 1 & centers_y <= h;
centers_x = centers_x(valid);
centers_y = centers_y(valid);
% 投票
for k = 1:length(centers_x)
h(centers_y(k), centers_x(k), i) = h(centers_y(k), centers_x(k), i) + 1;
end
end
% 归一化
if opts.normalise
h(:,:,i) = h(:,:,i) / radius;
end
end
% 输出半径向量
if nargout > 1
varargout{1} = r;
end
end
function opts = parse_args(opts, args)
%PARSE_ARGS 解析参数
n = length(args);
for i = 1:2:n
if isfield(opts, lower(args{i}))
opts.(lower(args{i})) = args{i+1};
end
end
end
circle_houghpeaks.m
function peaks = circle_houghpeaks(h, radii, varargin)
%CIRCLE_HOUGHPEAKS Find peaks in circle Hough transform
% PEAKS = CIRCLE_HOUGHPEAKS(H, RADII, PARAM1, VAL1, ...) finds peaks in the
% circle Hough transform accumulator H for circles with radii RADII.
% 默认参数
params = struct('nhoodxy', 15, 'nhoodr', 15, 'npeaks', 1, 'threshold', 0.5);
% 解析输入参数
if nargin > 2
params = parse_params(params, varargin);
end
% 找到最大值的初始候选
max_val = max(h(:));
threshold = params.threshold * max_val;
peaks = [];
for i = 1:params.npeaks
% 找到当前最大值
[r, c, s] = ind2sub(size(h), find(h == max_val, 1));
if isempty(r) || h(r, c, s) < threshold
break;
end
% 保存峰值
peaks = [peaks; c, r, radii(s)];
% 抑制邻域
r_start = max(1, r - params.nhoodxy);
r_end = min(size(h,1), r + params.nhoodxy);
c_start = max(1, c - params.nhoodxy);
c_end = min(size(h,2), c + params.nhoodxy);
s_start = max(1, s - params.nhoodr);
s_end = min(size(h,3), s + params.nhoodr);
h(r_start:r_end, c_start:c_end, s_start:s_end) = 0;
% 更新最大值
max_val = max(h(:));
end
end
function params = parse_params(params, args)
%PARSE_PARAMS 解析参数
n = length(args);
for i = 1:2:n
if isfield(params, lower(args{i}))
params.(lower(args{i})) = args{i+1};
end
end
end
使用示例
% 创建虹膜识别系统实例
irisSystem = IrisRecognitionSystem();
% 加载图像
irisSystem = irisSystem.loadImage('iris_image.jpg');
% 预处理图像
irisSystem = irisSystem.preprocessImage();
% 检测瞳孔
irisSystem = irisSystem.detectPupil();
% 检测虹膜
irisSystem = irisSystem.detectIris();
% 提取并归一化虹膜
irisSystem = irisSystem.extractIris();
% 提取特征
features = irisSystem.extractFeatures();
参考代码 虹膜识别源代码 www.3dddown.com/cna/55118.html
说明
- 图像预处理:应用中值滤波和对比度增强来提高图像质量。
- 瞳孔检测:使用霍夫变换检测瞳孔,这是虹膜的内边界。
- 虹膜检测:在瞳孔周围区域使用霍夫变换检测虹膜的外边界。
- 虹膜归一化:将环形虹膜区域转换为矩形区域,以便于后续特征提取。
- 特征提取:使用Gabor滤波器提取虹膜纹理特征。
注意
- 此代码需要Image Processing Toolbox。
- 霍夫变换参数可能需要根据具体图像进行调整。
- 对于不同的虹膜数据库,可能需要调整预处理步骤和参数。
- 完整的虹膜识别系统还需要添加匹配和识别模块。
浙公网安备 33010602011771号