电力系统短期负荷预测

1. 数据准备和预处理

classdef LoadDataPreprocessor
    properties
        raw_data
        processed_data
        feature_names
        temporal_features
        weather_features
        historical_features
    end
    
    methods
        function obj = LoadDataPreprocessor(data_file)
            % 构造函数
            if nargin > 0
                obj = obj.load_data(data_file);
            end
        end
        
        function obj = load_data(obj, data_file)
            % 加载电力负荷数据
            fprintf('加载数据文件: %s\n', data_file);
            
            % 支持多种数据格式
            [~, ~, ext] = fileparts(data_file);
            switch lower(ext)
                case '.csv'
                    obj.raw_data = readtable(data_file);
                case '.mat'
                    loaded_data = load(data_file);
                    obj.raw_data = loaded_data.data;
                case {'.xlsx', '.xls'}
                    obj.raw_data = readtable(data_file);
                otherwise
                    error('不支持的文件格式');
            end
            
            fprintf('数据加载完成,共 %d 行,%d 列\n', ...
                size(obj.raw_data, 1), size(obj.raw_data, 2));
        end
        
        function obj = preprocess_data(obj)
            % 数据预处理流程
            fprintf('开始数据预处理...\n');
            
            % 1. 处理缺失值
            obj = obj.handle_missing_values();
            
            % 2. 异常值检测和处理
            obj = obj.handle_outliers();
            
            % 3. 特征工程
            obj = obj.feature_engineering();
            
            % 4. 数据标准化
            obj = obj.normalize_data();
            
            fprintf('数据预处理完成\n');
        end
        
        function obj = handle_missing_values(obj)
            % 处理缺失值
            data = obj.raw_data;
            
            % 检查缺失值
            missing_ratio = sum(ismissing(data)) / height(data);
            fprintf('缺失值比例:\n');
            disp(missing_ratio);
            
            % 对数值列使用插值
            numeric_vars = varfun(@isnumeric, data, 'OutputFormat', 'uniform');
            numeric_data = data(:, numeric_vars);
            
            for i = 1:width(numeric_data)
                if missing_ratio(i) < 0.3 % 如果缺失值比例小于30%
                    numeric_data{:,i} = fillmissing(numeric_data{:,i}, 'linear');
                else
                    numeric_data{:,i} = fillmissing(numeric_data{:,i}, 'constant', 0);
                end
            end
            
            data(:, numeric_vars) = numeric_data;
            obj.raw_data = data;
        end
        
        function obj = handle_outliers(obj)
            % 异常值处理
            data = obj.raw_data;
            
            % 假设负荷数据在第一个数值列
            load_data = data{:,1};
            
            % 使用IQR方法检测异常值
            Q1 = quantile(load_data, 0.25);
            Q3 = quantile(load_data, 0.75);
            IQR = Q3 - Q1;
            lower_bound = Q1 - 1.5 * IQR;
            upper_bound = Q3 + 1.5 * IQR;
            
            outliers = load_data < lower_bound | load_data > upper_bound;
            fprintf('检测到 %d 个异常值 (%.2f%%)\n', ...
                sum(outliers), sum(outliers)/length(load_data)*100);
            
            % 使用移动中位数替换异常值
            if sum(outliers) > 0
                load_data_clean = load_data;
                for i = 1:length(load_data)
                    if outliers(i)
                        % 使用前后各2个小时的数据计算中位数
                        start_idx = max(1, i-2);
                        end_idx = min(length(load_data), i+2);
                        neighbor_data = load_data(start_idx:end_idx);
                        valid_neighbors = neighbor_data(~outliers(start_idx:end_idx));
                        if ~isempty(valid_neighbors)
                            load_data_clean(i) = median(valid_neighbors);
                        else
                            load_data_clean(i) = median(load_data(~outliers));
                        end
                    end
                end
                data{:,1} = load_data_clean;
            end
            
            obj.raw_data = data;
        end
        
        function obj = feature_engineering(obj)
            % 特征工程
            data = obj.raw_data;
            
            % 提取时间特征
            if isdatetime(data{:,1}) || iscell(data{:,1})
                time_col = data{:,1};
                if iscell(time_col)
                    time_col = datetime(time_col);
                end
                
                % 提取多种时间特征
                data.Hour = hour(time_col);
                data.DayOfWeek = weekday(time_col);
                data.Month = month(time_col);
                data.DayOfYear = day(time_col, 'dayofyear');
                data.IsWeekend = isweekend(time_col);
                data.Season = obj.get_season(month(time_col));
                
                % 节假日特征
                data.IsHoliday = obj.is_holiday(time_col);
                
                % 滞后特征
                data.Load_Lag1 = [NaN; data{1:end-1, 2}]; % 假设第二列是负荷
                data.Load_Lag24 = [NaN(24,1); data{1:end-24, 2}];
                data.Load_Lag168 = [NaN(168,1); data{1:end-168, 2}];
                
                % 移动平均特征
                data.Load_MA24 = movmean(data{:,2}, [23, 0], 'omitnan');
                data.Load_MA168 = movmean(data{:,2}, [167, 0], 'omitnan');
                
                obj.temporal_features = {'Hour', 'DayOfWeek', 'Month', ...
                    'DayOfYear', 'IsWeekend', 'Season', 'IsHoliday'};
                obj.historical_features = {'Load_Lag1', 'Load_Lag24', ...
                    'Load_Lag168', 'Load_MA24', 'Load_MA168'};
            end
            
            obj.processed_data = data;
            obj.feature_names = data.Properties.VariableNames;
        end
        
        function season = get_season(~, month)
            % 根据月份获取季节
            season = zeros(size(month));
            season(month >= 3 & month <= 5) = 1; % 春季
            season(month >= 6 & month <= 8) = 2; % 夏季
            season(month >= 9 & month <= 11) = 3; % 秋季
            season(month == 12 | month <= 2) = 4; % 冬季
        end
        
        function is_holiday = is_holiday(~, dates)
            % 简单的节假日判断(需要根据实际情况完善)
            is_holiday = false(size(dates));
            % 这里可以添加具体的节假日判断逻辑
            % 例如:is_holiday = (month(dates) == 1 & day(dates) == 1); % 元旦
        end
        
        function obj = normalize_data(obj)
            % 数据标准化
            data = obj.processed_data;
            
            % 对数值列进行标准化
            numeric_vars = varfun(@isnumeric, data, 'OutputFormat', 'uniform');
            
            for i = 1:length(numeric_vars)
                if numeric_vars(i)
                    col_data = data{:,i};
                    if ~all(isnan(col_data))
                        % Z-score标准化
                        mu = mean(col_data, 'omitnan');
                        sigma = std(col_data, 'omitnan');
                        if sigma > 0
                            data{:,i} = (col_data - mu) / sigma;
                        end
                    end
                end
            end
            
            obj.processed_data = data;
        end
        
        function [X_train, X_test, y_train, y_test] = split_data(obj, test_ratio, lag_hours)
            % 分割数据集
            if nargin < 2
                test_ratio = 0.2;
            end
            if nargin < 3
                lag_hours = 24;
            end
            
            data = obj.processed_data;
            numeric_data = data{:, varfun(@isnumeric, data, 'OutputFormat', 'uniform')};
            numeric_data = rmmissing(numeric_data); % 移除包含NaN的行
            
            % 准备特征和目标变量
            X = numeric_data(:, 2:end); % 假设第一列是时间,第二列开始是特征
            y = numeric_data(:, 1);     % 假设第一列是负荷值
            
            % 分割数据
            n = size(X, 1);
            split_point = floor(n * (1 - test_ratio));
            
            X_train = X(1:split_point, :);
            X_test = X(split_point+1:end, :);
            y_train = y(1:split_point);
            y_test = y(split_point+1:end);
            
            fprintf('训练集: %d 样本, 测试集: %d 样本\n', ...
                size(X_train, 1), size(X_test, 1));
        end
    end
end

2. 多种预测模型实现

classdef LoadForecaster
    properties
        models
        model_names
        predictions
        actual_values
        performance_metrics
        feature_importance
    end
    
    methods
        function obj = LoadForecaster()
            % 构造函数
            obj.models = struct();
            obj.model_names = {};
            obj.predictions = struct();
            obj.performance_metrics = struct();
        end
        
        function obj = train_arima(obj, X_train, y_train, order)
            % ARIMA模型训练
            fprintf('训练ARIMA模型...\n');
            
            if nargin < 4
                order = [2, 1, 2]; % [p, d, q]
            end
            
            try
                % 确保数据是列向量
                y_train = y_train(:);
                
                % 创建ARIMA模型
                Mdl = arima('ARLags', 1:order(1), ...
                           'D', order(2), ...
                           'MALags', 1:order(3), ...
                           'Constant', 0);
                
                % 训练模型
                obj.models.arima = estimate(Mdl, y_train, 'Display', 'off');
                obj.model_names{end+1} = 'ARIMA';
                
                fprintf('ARIMA模型训练完成\n');
            catch ME
                fprintf('ARIMA训练错误: %s\n', ME.message);
            end
        end
        
        function obj = train_svm(obj, X_train, y_train, kernel_type)
            % SVM模型训练
            fprintf('训练SVM模型...\n');
            
            if nargin < 4
                kernel_type = 'gaussian';
            end
            
            try
                % 训练SVM回归模型
                if strcmpi(kernel_type, 'gaussian')
                    obj.models.svm = fitrsvm(X_train, y_train, ...
                        'KernelFunction', 'gaussian', ...
                        'Standardize', true, ...
                        'KernelScale', 'auto');
                else
                    obj.models.svm = fitrsvm(X_train, y_train, ...
                        'KernelFunction', kernel_type, ...
                        'Standardize', true);
                end
                
                obj.model_names{end+1} = 'SVM';
                fprintf('SVM模型训练完成\n');
            catch ME
                fprintf('SVM训练错误: %s\n', ME.message);
            end
        end
        
        function obj = train_random_forest(obj, X_train, y_train, num_trees)
            % 随机森林训练
            fprintf('训练随机森林模型...\n');
            
            if nargin < 4
                num_trees = 100;
            end
            
            try
                % 训练随机森林
                obj.models.random_forest = TreeBagger(num_trees, X_train, y_train, ...
                    'Method', 'regression', ...
                    'OOBPrediction', 'on', ...
                    'MinLeafSize', 5);
                
                obj.model_names{end+1} = 'RandomForest';
                
                % 计算特征重要性
                obj.feature_importance.random_forest = ...
                    obj.models.random_forest.OOBPermutedPredictorDeltaError;
                
                fprintf('随机森林训练完成,OOB误差: %.4f\n', ...
                    mean(obj.models.random_forest.oobError));
            catch ME
                fprintf('随机森林训练错误: %s\n', ME.message);
            end
        end
        
        function obj = train_xgboost(obj, X_train, y_train, params)
            % XGBoost模型训练(需要安装XGBoost库)
            fprintf('训练XGBoost模型...\n');
            
            if nargin < 4
                params = struct('max_depth', 6, 'learning_rate', 0.1, ...
                    'n_estimators', 100, 'objective', 'reg:squarederror');
            end
            
            try
                % 转换数据为XGBoost格式
                dtrain = obj.mat2xgb(X_train, y_train);
                
                % 训练模型
                obj.models.xgboost = xgboost_train(params, dtrain, ...
                    params.n_estimators, struct('verbose', 0));
                
                obj.model_names{end+1} = 'XGBoost';
                fprintf('XGBoost模型训练完成\n');
            catch ME
                fprintf('XGBoost训练错误: %s\n', ME.message);
                fprintf('请确保已安装XGBoost for MATLAB\n');
            end
        end
        
        function obj = train_lstm(obj, X_train, y_train, lstm_params)
            % LSTM模型训练
            fprintf('训练LSTM模型...\n');
            
            if nargin < 4
                lstm_params = struct('hidden_units', 50, 'num_layers', 2, ...
                    'epochs', 50, 'learning_rate', 0.001);
            end
            
            try
                % 准备LSTM数据
                [X_lstm, y_lstm] = obj.prepare_lstm_data(X_train, y_train, 24);
                
                % 创建LSTM网络
                layers = [ ...
                    sequenceInputLayer(size(X_lstm, 2))
                    lstmLayer(lstm_params.hidden_units, 'OutputMode', 'last')
                    fullyConnectedLayer(50)
                    reluLayer()
                    fullyConnectedLayer(1)
                    regressionLayer()];
                
                options = trainingOptions('adam', ...
                    'MaxEpochs', lstm_params.epochs, ...
                    'InitialLearnRate', lstm_params.learning_rate, ...
                    'Verbose', false);
                
                % 训练网络
                obj.models.lstm = trainNetwork(X_lstm, y_lstm, layers, options);
                obj.model_names{end+1} = 'LSTM';
                
                fprintf('LSTM模型训练完成\n');
            catch ME
                fprintf('LSTM训练错误: %s\n', ME.message);
            end
        end
        
        function [X_seq, y_seq] = prepare_lstm_data(~, X, y, sequence_length)
            % 准备LSTM序列数据
            num_sequences = size(X, 1) - sequence_length;
            X_seq = cell(num_sequences, 1);
            y_seq = zeros(num_sequences, 1);
            
            for i = 1:num_sequences
                X_seq{i} = X(i:i+sequence_length-1, :)';
                y_seq(i) = y(i+sequence_length);
            end
        end
        
        function predictions = predict_arima(obj, X_test, y_test, steps)
            % ARIMA模型预测
            if nargin < 4
                steps = length(y_test);
            end
            
            if isfield(obj.models, 'arima')
                try
                    [y_pred, y_mse] = forecast(obj.models.arima, steps, 'Y0', y_test(1:min(100, length(y_test))));
                    predictions = y_pred;
                catch
                    predictions = zeros(steps, 1);
                end
            else
                predictions = zeros(steps, 1);
            end
        end
        
        function predictions = predict_svm(obj, X_test)
            % SVM模型预测
            if isfield(obj.models, 'svm')
                predictions = predict(obj.models.svm, X_test);
            else
                predictions = zeros(size(X_test, 1), 1);
            end
        end
        
        function predictions = predict_random_forest(obj, X_test)
            % 随机森林预测
            if isfield(obj.models, 'random_forest')
                predictions = predict(obj.models.random_forest, X_test);
            else
                predictions = zeros(size(X_test, 1), 1);
            end
        end
        
        function obj = predict_all_models(obj, X_test, y_test)
            % 所有模型预测
            fprintf('开始模型预测...\n');
            
            obj.actual_values = y_test;
            
            % 各模型预测
            for i = 1:length(obj.model_names)
                model_name = obj.model_names{i};
                fprintf('使用 %s 模型进行预测...\n', model_name);
                
                switch lower(model_name)
                    case 'arima'
                        pred = obj.predict_arima(X_test, y_test, length(y_test));
                    case 'svm'
                        pred = obj.predict_svm(X_test);
                    case 'randomforest'
                        pred = obj.predict_random_forest(X_test);
                    case 'xgboost'
                        pred = obj.predict_xgboost(X_test);
                    case 'lstm'
                        pred = obj.predict_lstm(X_test);
                    otherwise
                        pred = zeros(length(y_test), 1);
                end
                
                obj.predictions.(model_name) = pred;
                
                % 计算性能指标
                obj.performance_metrics.(model_name) = ...
                    obj.calculate_metrics(y_test, pred);
            end
        end
        
        function metrics = calculate_metrics(~, y_true, y_pred)
            % 计算预测性能指标
            metrics = struct();
            
            % 移除NaN值
            valid_idx = ~isnan(y_true) & ~isnan(y_pred);
            y_true = y_true(valid_idx);
            y_pred = y_pred(valid_idx);
            
            if isempty(y_true)
                metrics.MAE = NaN;
                metrics.RMSE = NaN;
                metrics.MAPE = NaN;
                metrics.R2 = NaN;
                return;
            end
            
            % 平均绝对误差
            metrics.MAE = mean(abs(y_true - y_pred));
            
            % 均方根误差
            metrics.RMSE = sqrt(mean((y_true - y_pred).^2));
            
            % 平均绝对百分比误差
            metrics.MAPE = mean(abs((y_true - y_pred) ./ y_true)) * 100;
            
            % R²决定系数
            SS_res = sum((y_true - y_pred).^2);
            SS_tot = sum((y_true - mean(y_true)).^2);
            metrics.R2 = 1 - (SS_res / SS_tot);
        end
        
        function plot_predictions(obj, model_names)
            % 绘制预测结果
            if nargin < 2
                model_names = obj.model_names;
            end
            
            figure('Position', [100, 100, 1200, 800]);
            
            % 预测结果对比
            subplot(2, 2, 1);
            time_points = 1:length(obj.actual_values);
            plot(time_points, obj.actual_values, 'k-', 'LineWidth', 2);
            hold on;
            
            colors = lines(length(model_names));
            legend_entries = {'实际值'};
            
            for i = 1:length(model_names)
                model_name = model_names{i};
                if isfield(obj.predictions, model_name)
                    pred = obj.predictions.(model_name);
                    plot(time_points, pred, '--', 'Color', colors(i,:), 'LineWidth', 1.5);
                    legend_entries{end+1} = model_name;
                end
            end
            
            xlabel('时间点');
            ylabel('负荷值');
            title('负荷预测结果对比');
            legend(legend_entries, 'Location', 'best');
            grid on;
            
            % 误差分布
            subplot(2, 2, 2);
            errors = [];
            error_labels = {};
            
            for i = 1:length(model_names)
                model_name = model_names{i};
                if isfield(obj.predictions, model_name)
                    pred = obj.predictions.(model_name);
                    error = abs(pred - obj.actual_values);
                    errors = [errors; error];
                    error_labels = [error_labels; repmat({model_name}, length(error), 1)];
                end
            end
            
            boxplot(errors, error_labels);
            ylabel('绝对误差');
            title('各模型误差分布');
            grid on;
            
            % 性能指标对比
            subplot(2, 2, 3);
            metrics = {'MAE', 'RMSE', 'MAPE'};
            metric_data = zeros(length(metrics), length(model_names));
            
            for i = 1:length(model_names)
                model_name = model_names{i};
                if isfield(obj.performance_metrics, model_name)
                    for j = 1:length(metrics)
                        metric_data(j, i) = obj.performance_metrics.(model_name).(metrics{j});
                    end
                end
            end
            
            bar(metric_data');
            set(gca, 'XTickLabel', model_names);
            ylabel('指标值');
            title('模型性能指标对比');
            legend(metrics, 'Location', 'best');
            grid on;
            
            % 特征重要性(随机森林)
            subplot(2, 2, 4);
            if isfield(obj.feature_importance, 'random_forest')
                importance = obj.feature_importance.random_forest;
                [~, idx] = sort(importance, 'descend');
                top_idx = idx(1:min(10, length(importance)));
                
                barh(importance(top_idx));
                set(gca, 'YTickLabel', top_idx);
                xlabel('重要性得分');
                title('随机森林特征重要性 (Top 10)');
                grid on;
            end
        end
        
        function print_performance(obj)
            % 打印性能指标
            fprintf('\n=== 模型性能比较 ===\n');
            fprintf('%-15s %-8s %-8s %-8s %-8s\n', ...
                '模型', 'MAE', 'RMSE', 'MAPE%', 'R²');
            fprintf('%-15s %-8s %-8s %-8s %-8s\n', ...
                '-----', '---', '----', '-----', '--');
            
            for i = 1:length(obj.model_names)
                model_name = obj.model_names{i};
                if isfield(obj.performance_metrics, model_name)
                    m = obj.performance_metrics.(model_name);
                    fprintf('%-15s %-8.3f %-8.3f %-8.2f %-8.3f\n', ...
                        model_name, m.MAE, m.RMSE, m.MAPE, m.R2);
                end
            end
        end
    end
end

3. 集成学习和模型融合

classdef EnsembleForecaster
    properties
        base_models
        ensemble_weights
        ensemble_method
        predictions
        performance
    end
    
    methods
        function obj = EnsembleForecaster(base_models, method)
            % 构造函数
            obj.base_models = base_models;
            if nargin < 2
                obj.ensemble_method = 'weighted_average';
            else
                obj.ensemble_method = method;
            end
        end
        
        function obj = train_ensemble(obj, X_train, y_train, X_val, y_val)
            % 训练集成模型
            fprintf('训练集成预测模型...\n');
            
            % 获取基模型的预测
            base_predictions = [];
            model_weights = [];
            
            for i = 1:length(obj.base_models)
                model = obj.base_models{i};
                
                % 获取模型在验证集上的预测
                if isa(model, 'LoadForecaster')
                    pred = model.predict_all_models(X_val, y_val);
                    % 这里需要根据具体实现调整
                else
                    pred = predict(model, X_val);
                end
                
                base_predictions = [base_predictions, pred];
                
                % 根据性能计算权重
                mae = mean(abs(pred - y_val));
                weight = 1 / (mae + eps); % 避免除零
                model_weights = [model_weights, weight];
            end
            
            % 归一化权重
            obj.ensemble_weights = model_weights / sum(model_weights);
            
            fprintf('集成模型训练完成,权重: %s\n', mat2str(obj.ensemble_weights, 2));
        end
        
        function ensemble_pred = predict_ensemble(obj, X_test)
            % 集成预测
            base_preds = zeros(size(X_test, 1), length(obj.base_models));
            
            for i = 1:length(obj.base_models)
                model = obj.base_models{i};
                if isa(model, 'LoadForecaster')
                    % 处理LoadForecaster对象的预测
                    pred = model.predict_all_models(X_test, zeros(size(X_test,1),1));
                else
                    pred = predict(model, X_test);
                end
                base_preds(:, i) = pred;
            end
            
            switch obj.ensemble_method
                case 'weighted_average'
                    ensemble_pred = base_preds * obj.ensemble_weights';
                case 'median'
                    ensemble_pred = median(base_preds, 2);
                case 'best_model'
                    [~, best_idx] = max(obj.ensemble_weights);
                    ensemble_pred = base_preds(:, best_idx);
                otherwise
                    ensemble_pred = mean(base_preds, 2);
            end
        end
    end
end

4. 完整的使用示例

% 电力系统短期负荷预测主程序
function main_short_term_load_forecasting()
    % 清除环境
    clear; close all; clc;
    
    fprintf('=== 电力系统短期负荷预测系统 ===\n\n');
    
    % 1. 数据准备和预处理
    fprintf('步骤1: 数据准备和预处理\n');
    
    % 创建示例数据(实际应用中替换为真实数据)
    [X, y] = create_sample_load_data();
    
    % 数据预处理
    preprocessor = LoadDataPreprocessor();
    preprocessor.raw_data = array2table([y, X], 'VariableNames', ...
        {'Load', 'Feature1', 'Feature2', 'Feature3', 'Feature4'});
    preprocessor = preprocessor.preprocess_data();
    
    % 分割数据
    [X_train, X_test, y_train, y_test] = preprocessor.split_data(0.2);
    
    % 2. 训练预测模型
    fprintf('\n步骤2: 训练预测模型\n');
    
    forecaster = LoadForecaster();
    
    % 训练多个模型
    forecaster = forecaster.train_arima(X_train, y_train);
    forecaster = forecaster.train_svm(X_train, y_train);
    forecaster = forecaster.train_random_forest(X_train, y_train);
    
    % 3. 模型预测和评估
    fprintf('\n步骤3: 模型预测和评估\n');
    
    forecaster = forecaster.predict_all_models(X_test, y_test);
    
    % 显示性能比较
    forecaster.print_performance();
    
    % 4. 可视化结果
    fprintf('\n步骤4: 结果可视化\n');
    
    forecaster.plot_predictions();
    
    % 5. 集成学习
    fprintf('\n步骤5: 集成学习\n');
    
    % 创建集成模型(示例)
    base_models = {forecaster.models.svm, forecaster.models.random_forest};
    ensemble = EnsembleForecaster(base_models, 'weighted_average');
    
    % 这里需要验证集数据来训练集成权重
    % ensemble = ensemble.train_ensemble(X_train, y_train, X_val, y_val);
    
    fprintf('\n=== 预测完成 ===\n');
end

% 创建示例数据函数
function [X, y] = create_sample_load_data()
    % 创建示例负荷数据
    rng(42); % 设置随机种子确保可重现
    
    n_points = 1000;
    time = (1:n_points)';
    
    % 基础负荷模式
    base_load = 1000 + 500 * sin(2*pi*time/24) + 200 * sin(2*pi*time/168);
    
    % 添加天气影响
    temperature = 20 + 10 * sin(2*pi*time/24) + 5 * randn(n_points, 1);
    humidity = 50 + 20 * sin(2*pi*time/12) + 10 * randn(n_points, 1);
    
    % 添加随机噪声
    noise = 50 * randn(n_points, 1);
    
    % 生成目标负荷
    y = base_load + 10 * temperature + 5 * humidity + noise;
    
    % 生成特征
    X = [temperature, humidity, sin(2*pi*time/24), cos(2*pi*time/24)];
    
    fprintf('生成示例数据: %d 个时间点\n', n_points);
end

% 实时预测函数
function real_time_forecasting_example()
    % 实时预测示例
    fprintf('实时负荷预测示例...\n');
    
    % 加载最新数据
    % 这里应该是从实时数据库或API获取数据
    recent_data = get_recent_load_data();
    
    % 使用训练好的模型进行预测
    % load('trained_forecaster.mat'); % 加载已训练的模型
    
    % 进行未来24小时预测
    horizon = 24;
    % future_pred = predict_future(forecaster, recent_data, horizon);
    
    fprintf('未来%d小时负荷预测完成\n', horizon);
end

5. 性能优化和高级功能

% 模型超参数优化
function optimized_forecaster = optimize_hyperparameters(X_train, y_train)
    % 使用贝叶斯优化寻找最佳超参数
    
    fprintf('开始超参数优化...\n');
    
    % 定义优化变量
    optim_vars = [
        optimizableVariable('NumTrees', [50, 200], 'Type', 'integer');
        optimizableVariable('MinLeafSize', [1, 20], 'Type', 'integer');
        optimizableVariable('MaxDepth', [5, 20], 'Type', 'integer')
    ];
    
    % 目标函数
    objective_function = @(params) train_evaluate_model(X_train, y_train, params);
    
    % 贝叶斯优化
    results = bayesopt(objective_function, optim_vars, ...
        'MaxTime', 3600, 'Verbose', 1, ...
        'PlotFcn', {@plotObjectiveModel, @plotMinObjective});
    
    % 使用最佳参数训练最终模型
    best_params = results.XAtMinObjective;
    optimized_forecaster = train_final_model(X_train, y_train, best_params);
    
    fprintf('超参数优化完成\n');
end

function loss = train_evaluate_model(X_train, y_train, params)
    % 训练并评估模型
    cv = cvpartition(length(y_train), 'KFold', 5);
    losses = zeros(cv.NumTestSets, 1);
    
    for i = 1:cv.NumTestSets
        train_idx = training(cv, i);
        test_idx = test(cv, i);
        
        X_tr = X_train(train_idx, :);
        y_tr = y_train(train_idx);
        X_te = X_train(test_idx, :);
        y_te = y_train(test_idx);
        
        % 训练模型
        model = TreeBagger(params.NumTrees, X_tr, y_tr, ...
            'Method', 'regression', ...
            'MinLeafSize', params.MinLeafSize);
        
        % 预测和评估
        y_pred = predict(model, X_te);
        losses(i) = sqrt(mean((y_te - y_pred).^2)); % RMSE
    end
    
    loss = mean(losses);
end

参考代码 电力系统短期负荷预测 www.youwenfan.com.com/contentcnj/59804.html

电力系统短期负荷预测方案提供了:

  1. 数据预处理:缺失值处理、异常值检测、特征工程
  2. 多种预测模型:ARIMA、SVM、随机森林、LSTM等
  3. 模型评估:多种性能指标和可视化
  4. 集成学习:模型融合提高预测精度
  5. 超参数优化:自动寻找最佳模型参数
posted @ 2025-10-16 10:20  bqyfa66984  阅读(24)  评论(0)    收藏  举报