基于FFT以及次谐波的两种相位屏仿真方法
基于FFT(快速傅里叶变换)和次谐波补偿的两种相位屏仿真方法的MATLAB源程序。这些方法常用于大气湍流相位屏的模拟,适用于自适应光学、自由空间光通信等领域。
方法1:基于FFT的经典相位屏生成
function [phase_screen] = fft_phase_screen(N, delta, r0, L0)
% FFT-based phase screen simulation
% Inputs:
% N : Number of grid points (N x N)
% delta : Grid spacing [m]
% r0 : Fried parameter [m]
% L0 : Outer scale [m]
% Output:
% phase_screen : Simulated phase screen [rad]
% Generate frequency grid
k = 2*pi/(N*delta) * [0:N/2-1, -N/2:-1]; % Spatial frequencies [rad/m]
[Kx, Ky] = meshgrid(k, k);
K = sqrt(Kx.^2 + Ky.^2); % Radial wave number
% Set zero frequency to small value to avoid singularity
K(1,1) = 1e-6;
% Von Karman power spectrum
P_k = 0.023 * r0^(-5/3) * (K.^2 + 1/L0^2).^(-11/6);
% Generate random complex field with Gaussian statistics
rand_phase = 2*pi*rand(N);
H = sqrt(P_k) .* (randn(N) + 1i*randn(N)) .* exp(1i*rand_phase);
% Ensure Hermitian symmetry for real output
H(1,1) = 0;
H(N/2+1, N/2+1) = 0;
H(N/2+1,1) = 0;
H(1,N/2+1) = 0;
% Inverse FFT to get phase screen
phase_screen = real(ifft2(ifftshift(H)));
% Normalize to zero mean
phase_screen = phase_screen - mean(phase_screen(:));
end
方法2:次谐波补偿相位屏生成
function [phase_screen] = subharmonic_phase_screen(N, delta, r0, L0, M)
% Subharmonic-compensated phase screen simulation
% Inputs:
% N : Number of grid points (N x N)
% delta : Grid spacing [m]
% r0 : Fried parameter [m]
% L0 : Outer scale [m]
% M : Number of subharmonic layers
% Output:
% phase_screen : Simulated phase screen [rad]
% Base FFT phase screen (high frequencies)
phase_base = fft_phase_screen(N, delta, r0, L0);
% Initialize subharmonic compensation
phase_sub = zeros(N);
% Generate subharmonic layers
for m = 1:M
% Determine number of subharmonics for this layer
n = 3^m;
delta_k = 2*pi/(n*N*delta); % Frequency step
% Generate random coefficients
a = randn(n, n);
b = randn(n, n);
% Create spatial grid
[X, Y] = meshgrid((0:N-1)*delta);
% Add subharmonic components
for p = 1:n
for q = 1:n
kx = (p - n/2 - 0.5) * delta_k;
ky = (q - n/2 - 0.5) * delta_k;
% Von Karman spectrum value
K_mag = sqrt(kx^2 + ky^2);
P_k = 0.023 * r0^(-5/3) * (K_mag^2 + 1/L0^2)^(-11/6);
% Add component to subharmonic phase
phase_sub = phase_sub + sqrt(P_k) * ...
(a(p,q)*cos(kx*X + ky*Y) + ...
b(p,q)*sin(kx*X + ky*Y));
end
end
end
% Combine base and subharmonic components
phase_screen = phase_base + phase_sub;
% Normalize to zero mean
phase_screen = phase_screen - mean(phase_screen(:));
end
方法使用
% Simulation parameters
N = 512; % Grid size (512x512)
delta = 0.01; % Grid spacing [m]
r0 = 0.1; % Fried parameter [m]
L0 = 10; % Outer scale [m]
M = 3; % Subharmonic layers
% Generate phase screens
fft_screen = fft_phase_screen(N, delta, r0, L0);
sub_screen = subharmonic_phase_screen(N, delta, r0, L0, M);
% Visualization
figure;
subplot(1,2,1);
imagesc(fft_screen);
title('FFT Method');
axis square;
colorbar;
subplot(1,2,2);
imagesc(sub_screen);
title('Subharmonic Method');
axis square;
colorbar;
colormap(jet);
参考代码 基于FFT以及次谐波的两种相位屏仿真方法源程序 youwenfan.com/contentcnb/78668.html
关键参数说明
-
Fried参数 (r0):
- 描述大气湍流强度
- 典型值: 0.05-0.2 m (强湍流), >0.2 m (弱湍流)
- 计算: \(r_0 = \left[0.423k^2\sec z \int C_n^2 dh\right]^{-3/5}\)
-
外尺度 (L0):
- 湍流涡旋的最大尺寸
- 典型值: 10-100 m (地面), >100 m (高空)
-
次谐波层数 (M):
- 控制低频补偿精度
- 典型值: 3-5 层
- 增加层数提高低频精度但增加计算量
方法对比
| 特性 | FFT方法 | 次谐波补偿方法 |
|---|---|---|
| 计算复杂度 | O(N² log N) | O(M·N²) |
| 低频分量表现 | 不足 | 精确 |
| 相位结构函数精度 | 高空间频率精确 | 全频谱精确 |
| 适用场景 | 快速生成、高空间频率主导的湍流 | 精确模拟、特别是大尺度湍流结构 |
| 参数依赖 | r0, L0 | r0, L0, M |
物理背景
相位屏模拟基于大气湍流的Kolmogorov理论:
- 功率谱密度:\(\Phi_n(\kappa) = 0.033C_n^2\kappa^{-11/3}\)
- 相位结构函数:\(D_\phi(r) = 6.88\left(\frac{r}{r_0}\right)^{5/3}\)
- 次谐波补偿解决FFT方法在低频(\(\kappa < 2\pi/L_0\))的采样不足问题
这些代码提供了大气湍流相位屏仿真的基础实现,可根据具体应用需求调整参数和优化算法。
浙公网安备 33010602011771号