摘要: 定义7:若二维连续型随机变量\((X,Y)\)的概率密度为:\(f(x,y) = \frac{1}{2\pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}} e^{-\frac{1}{2(1-\rho^2)} [ \frac{(x-\mu_1)^2}{\sigma_1^2} - 阅读全文
posted @ 2025-01-16 11:03 Arthur古德曼 阅读(171) 评论(0) 推荐(0)
摘要: 1 多维随机变量的概念 1.1 二维随机变量及其分布函数 在实际问题中,通常需要多个随机变量才能较好地描述某一随机现象;例如,打靶时,弹着点是由两个随机变量所构成的(横、纵坐标);飞机重心在空中的位置是由三个随机变量(三位坐标)来确定的;学生的考试成绩是由多个随机变量(每门课程的成绩)组成的。 为了 阅读全文
posted @ 2025-01-16 10:55 Arthur古德曼 阅读(286) 评论(0) 推荐(0)