LDPC码译码功能的C语言实现

LDPC译码算法概述

LDPC码主要有两种译码算法:

  • 和积算法(Sum-Product) - 最优性能,较高复杂度
  • 最小和算法(Min-Sum) - 次优性能,较低复杂度

提供这两种算法的完整实现

实现

1. 数据结构定义

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <time.h>

// LDPC码结构体
typedef struct {
    int n;              // 码字长度
    int m;              // 校验方程数
    int k;              // 信息位长度 (n - m)
    int **H;            // 校验矩阵 (m x n)
    int *col_weight;    // 列重
    int *row_weight;    // 行重
    int max_col_weight; // 最大列重
    int max_row_weight; // 最大行重
    int **col_pos;      // 每列中1的位置
    int **row_pos;      // 每行中1的位置
} LDPC_Code;

// 译码器参数
typedef struct {
    int max_iter;       // 最大迭代次数
    double sigma;       // 噪声标准差
    int decision_method;// 判决方法
    int algorithm;      // 译码算法
} Decoder_Params;

// 算法类型定义
#define SUM_PRODUCT 0
#define MIN_SUM     1

// 判决方法
#define HARD_DECISION 0
#define SOFT_DECISION 1

2. LDPC码初始化

// 创建LDPC码结构
LDPC_Code* create_ldpc_code(int n, int m) {
    LDPC_Code *code = (LDPC_Code*)malloc(sizeof(LDPC_Code));
    code->n = n;
    code->m = m;
    code->k = n - m;
    
    // 分配校验矩阵内存
    code->H = (int**)malloc(m * sizeof(int*));
    for (int i = 0; i < m; i++) {
        code->H[i] = (int*)malloc(n * sizeof(int));
    }
    
    code->col_weight = (int*)calloc(n, sizeof(int));
    code->row_weight = (int*)calloc(m, sizeof(int));
    
    return code;
}

// 释放LDPC码结构
void free_ldpc_code(LDPC_Code *code) {
    if (code == NULL) return;
    
    for (int i = 0; i < code->m; i++) {
        free(code->H[i]);
    }
    free(code->H);
    free(code->col_weight);
    free(code->row_weight);
    
    if (code->col_pos != NULL) {
        for (int i = 0; i < code->n; i++) {
            free(code->col_pos[i]);
        }
        free(code->col_pos);
    }
    
    if (code->row_pos != NULL) {
        for (int i = 0; i < code->m; i++) {
            free(code->row_pos[i]);
        }
        free(code->row_pos);
    }
    
    free(code);
}

// 计算行列权重和位置信息
void compute_code_properties(LDPC_Code *code) {
    int i, j;
    
    // 计算行重和列重
    for (i = 0; i < code->m; i++) {
        code->row_weight[i] = 0;
        for (j = 0; j < code->n; j++) {
            if (code->H[i][j] == 1) {
                code->row_weight[i]++;
                code->col_weight[j]++;
            }
        }
    }
    
    // 计算最大行重和列重
    code->max_row_weight = 0;
    code->max_col_weight = 0;
    for (i = 0; i < code->m; i++) {
        if (code->row_weight[i] > code->max_row_weight) {
            code->max_row_weight = code->row_weight[i];
        }
    }
    for (j = 0; j < code->n; j++) {
        if (code->col_weight[j] > code->max_col_weight) {
            code->max_col_weight = code->col_weight[j];
        }
    }
    
    // 分配并计算位置信息
    code->col_pos = (int**)malloc(code->n * sizeof(int*));
    code->row_pos = (int**)malloc(code->m * sizeof(int*));
    
    for (j = 0; j < code->n; j++) {
        code->col_pos[j] = (int*)malloc(code->col_weight[j] * sizeof(int));
        int pos = 0;
        for (i = 0; i < code->m; i++) {
            if (code->H[i][j] == 1) {
                code->col_pos[j][pos++] = i;
            }
        }
    }
    
    for (i = 0; i < code->m; i++) {
        code->row_pos[i] = (int*)malloc(code->row_weight[i] * sizeof(int));
        int pos = 0;
        for (j = 0; j < code->n; j++) {
            if (code->H[i][j] == 1) {
                code->row_pos[i][pos++] = j;
            }
        }
    }
}

3. 和积算法(Sum-Product)实现

// 双曲正切函数
double tanh(double x) {
    if (x > 20.0) return 1.0;
    if (x < -20.0) return -1.0;
    double ex = exp(x);
    double e_x = exp(-x);
    return (ex - e_x) / (ex + e_x);
}

// 反双曲正切函数
double atanh(double x) {
    if (x >= 1.0) return 20.0;
    if (x <= -1.0) return -20.0;
    return 0.5 * log((1.0 + x) / (1.0 - x));
}

// 和积算法译码
int sum_product_decode(LDPC_Code *code, double *received_llr, int *decoded_bits, 
                      Decoder_Params *params) {
    int i, j, k, iter;
    int converged = 0;
    
    // 分配内存用于消息传递
    double **R = (double**)malloc(code->m * sizeof(double*)); // 校验节点到变量节点
    double **Q = (double**)malloc(code->m * sizeof(double*)); // 变量节点到校验节点
    
    for (i = 0; i < code->m; i++) {
        R[i] = (double*)malloc(code->n * sizeof(double));
        Q[i] = (double*)malloc(code->n * sizeof(double));
        for (j = 0; j < code->n; j++) {
            R[i][j] = 0.0;
            Q[i][j] = 0.0;
        }
    }
    
    // 初始化Q矩阵 (变量节点到校验节点)
    for (j = 0; j < code->n; j++) {
        for (k = 0; k < code->col_weight[j]; k++) {
            i = code->col_pos[j][k];
            Q[i][j] = received_llr[j];
        }
    }
    
    // 迭代译码
    for (iter = 0; iter < params->max_iter && !converged; iter++) {
        // 步骤1: 更新校验节点到变量节点消息 R[i][j]
        for (i = 0; i < code->m; i++) {
            for (k = 0; k < code->row_weight[i]; k++) {
                j = code->row_pos[i][k];
                
                double product = 1.0;
                for (int l = 0; l < code->row_weight[i]; l++) {
                    int j_prime = code->row_pos[i][l];
                    if (j_prime != j) {
                        product *= tanh(Q[i][j_prime] / 2.0);
                    }
                }
                
                R[i][j] = 2.0 * atanh(product);
            }
        }
        
        // 步骤2: 更新变量节点到校验节点消息 Q[i][j]
        for (j = 0; j < code->n; j++) {
            for (k = 0; k < code->col_weight[j]; k++) {
                i = code->col_pos[j][k];
                
                Q[i][j] = received_llr[j];
                for (int l = 0; l < code->col_weight[j]; l++) {
                    int i_prime = code->col_pos[j][l];
                    if (i_prime != i) {
                        Q[i][j] += R[i_prime][j];
                    }
                }
            }
        }
        
        // 步骤3: 计算后验概率并进行硬判决
        double *posterior_llr = (double*)malloc(code->n * sizeof(double));
        for (j = 0; j < code->n; j++) {
            posterior_llr[j] = received_llr[j];
            for (k = 0; k < code->col_weight[j]; k++) {
                i = code->col_pos[j][k];
                posterior_llr[j] += R[i][j];
            }
            
            // 硬判决
            decoded_bits[j] = (posterior_llr[j] < 0) ? 1 : 0;
        }
        
        // 步骤4: 校验是否满足所有校验方程
        converged = 1;
        for (i = 0; i < code->m && converged; i++) {
            int syndrome = 0;
            for (k = 0; k < code->row_weight[i]; k++) {
                j = code->row_pos[i][k];
                syndrome ^= decoded_bits[j];
            }
            if (syndrome != 0) {
                converged = 0;
            }
        }
        
        free(posterior_llr);
        
        if (converged) {
            printf("迭代 %d: 译码成功!\n", iter + 1);
            break;
        }
    }
    
    // 释放内存
    for (i = 0; i < code->m; i++) {
        free(R[i]);
        free(Q[i]);
    }
    free(R);
    free(Q);
    
    return converged;
}

4. 最小和算法(Min-Sum)实现

// 最小和算法译码 - 复杂度更低,性能稍差
int min_sum_decode(LDPC_Code *code, double *received_llr, int *decoded_bits, 
                  Decoder_Params *params) {
    int i, j, k, iter;
    int converged = 0;
    
    // 分配内存用于消息传递
    double **R = (double**)malloc(code->m * sizeof(double*)); // 校验节点到变量节点
    double **Q = (double**)malloc(code->m * sizeof(double*)); // 变量节点到校验节点
    
    for (i = 0; i < code->m; i++) {
        R[i] = (double*)malloc(code->n * sizeof(double));
        Q[i] = (double*)malloc(code->n * sizeof(double));
        for (j = 0; j < code->n; j++) {
            R[i][j] = 0.0;
            Q[i][j] = 0.0;
        }
    }
    
    // 初始化Q矩阵
    for (j = 0; j < code->n; j++) {
        for (k = 0; k < code->col_weight[j]; k++) {
            i = code->col_pos[j][k];
            Q[i][j] = received_llr[j];
        }
    }
    
    // 迭代译码
    for (iter = 0; iter < params->max_iter && !converged; iter++) {
        // 步骤1: 更新校验节点到变量节点消息 R[i][j] (最小和更新)
        for (i = 0; i < code->m; i++) {
            for (k = 0; k < code->row_weight[i]; k++) {
                j = code->row_pos[i][k];
                
                double min1 = 1e20, min2 = 1e20;
                int sign_product = 1;
                
                for (int l = 0; l < code->row_weight[i]; l++) {
                    int j_prime = code->row_pos[i][l];
                    if (j_prime != j) {
                        double abs_q = fabs(Q[i][j_prime]);
                        int sign_q = (Q[i][j_prime] >= 0) ? 1 : -1;
                        
                        sign_product *= sign_q;
                        
                        if (abs_q < min1) {
                            min2 = min1;
                            min1 = abs_q;
                        } else if (abs_q < min2) {
                            min2 = abs_q;
                        }
                    }
                }
                
                // 使用最小值和次小值
                R[i][j] = sign_product * min1;
            }
        }
        
        // 步骤2: 更新变量节点到校验节点消息 Q[i][j]
        for (j = 0; j < code->n; j++) {
            for (k = 0; k < code->col_weight[j]; k++) {
                i = code->col_pos[j][k];
                
                Q[i][j] = received_llr[j];
                for (int l = 0; l < code->col_weight[j]; l++) {
                    int i_prime = code->col_pos[j][l];
                    if (i_prime != i) {
                        Q[i][j] += R[i_prime][j];
                    }
                }
            }
        }
        
        // 步骤3: 计算后验概率并进行硬判决
        double *posterior_llr = (double*)malloc(code->n * sizeof(double));
        for (j = 0; j < code->n; j++) {
            posterior_llr[j] = received_llr[j];
            for (k = 0; k < code->col_weight[j]; k++) {
                i = code->col_pos[j][k];
                posterior_llr[j] += R[i][j];
            }
            
            decoded_bits[j] = (posterior_llr[j] < 0) ? 1 : 0;
        }
        
        // 步骤4: 校验是否满足所有校验方程
        converged = 1;
        for (i = 0; i < code->m && converged; i++) {
            int syndrome = 0;
            for (k = 0; k < code->row_weight[i]; k++) {
                j = code->row_pos[i][k];
                syndrome ^= decoded_bits[j];
            }
            if (syndrome != 0) {
                converged = 0;
            }
        }
        
        free(posterior_llr);
        
        if (converged) {
            printf("迭代 %d: 译码成功!\n", iter + 1);
            break;
        }
    }
    
    // 释放内存
    for (i = 0; i < code->m; i++) {
        free(R[i]);
        free(Q[i]);
    }
    free(R);
    free(Q);
    
    return converged;
}

5. 通用译码接口

// 通用LDPC译码函数
int ldpc_decode(LDPC_Code *code, double *received_llr, int *decoded_bits, 
               Decoder_Params *params) {
    
    if (params->algorithm == SUM_PRODUCT) {
        return sum_product_decode(code, received_llr, decoded_bits, params);
    } else if (params->algorithm == MIN_SUM) {
        return min_sum_decode(code, received_llr, decoded_bits, params);
    } else {
        printf("未知的译码算法!\n");
        return 0;
    }
}

// 计算LLR值 (BPSK调制,AWGN信道)
void compute_llr(double *received_signal, double *llr, int length, double noise_var) {
    for (int i = 0; i < length; i++) {
        // BPSK: 0 -> +1, 1 -> -1
        // LLR = 2 * y / sigma^2
        llr[i] = 2.0 * received_signal[i] / noise_var;
    }
}

// 生成随机码字
void generate_codeword(LDPC_Code *code, int *codeword) {
    // 简单实现: 生成全零码字 (实际应使用编码器)
    for (int i = 0; i < code->n; i++) {
        codeword[i] = 0;
    }
}

// BPSK调制
void bpsk_modulate(int *bits, double *modulated, int length) {
    for (int i = 0; i < length; i++) {
        modulated[i] = (bits[i] == 0) ? 1.0 : -1.0;
    }
}

// 添加高斯白噪声
void add_awgn_noise(double *signal, double *noisy_signal, int length, double sigma) {
    for (int i = 0; i < length; i++) {
        double u1 = (double)rand() / RAND_MAX;
        double u2 = (double)rand() / RAND_MAX;
        
        // Box-Muller变换生成高斯随机数
        double z0 = sqrt(-2.0 * log(u1)) * cos(2.0 * M_PI * u2);
        
        noisy_signal[i] = signal[i] + sigma * z0;
    }
}

6. 测试和示例

// 创建示例LDPC码 (简单的规则LDPC码)
LDPC_Code* create_example_ldpc_code() {
    int n = 12; // 码字长度
    int m = 6;  // 校验方程数
    
    LDPC_Code *code = create_ldpc_code(n, m);
    
    // 示例校验矩阵 (6x12)
    int example_H[6][12] = {
        {1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0},
        {1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0},
        {0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0},
        {0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0},
        {0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0},
        {0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1}
    };
    
    // 复制校验矩阵
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            code->H[i][j] = example_H[i][j];
        }
    }
    
    compute_code_properties(code);
    return code;
}

// 主测试函数
int main() {
    srand(time(NULL));
    
    // 创建LDPC码
    LDPC_Code *code = create_example_ldpc_code();
    
    // 设置译码参数
    Decoder_Params params;
    params.max_iter = 50;
    params.sigma = 0.5; // 噪声标准差
    params.algorithm = MIN_SUM; // 使用最小和算法
    
    // 生成测试数据
    int *transmit_bits = (int*)malloc(code->n * sizeof(int));
    int *decoded_bits = (int*)malloc(code->n * sizeof(int));
    double *modulated = (double*)malloc(code->n * sizeof(double));
    double *received = (double*)malloc(code->n * sizeof(double));
    double *llr = (double*)malloc(code->n * sizeof(double));
    
    // 生成全零码字
    generate_codeword(code, transmit_bits);
    
    // BPSK调制
    bpsk_modulate(transmit_bits, modulated, code->n);
    
    // 添加噪声
    add_awgn_noise(modulated, received, code->n, params.sigma);
    
    // 计算LLR
    compute_llr(received, llr, code->n, params.sigma * params.sigma);
    
    printf("开始LDPC译码...\n");
    printf("码字长度: %d, 信息位: %d, 校验位: %d\n", code->n, code->k, code->m);
    printf("最大迭代次数: %d, 噪声标准差: %.3f\n", params.max_iter, params.sigma);
    
    // 执行译码
    clock_t start = clock();
    int success = ldpc_decode(code, llr, decoded_bits, &params);
    clock_t end = clock();
    
    double decode_time = ((double)(end - start)) / CLOCKS_PER_SEC;
    
    // 输出结果
    printf("\n译码结果:\n");
    printf("译码状态: %s\n", success ? "成功" : "失败");
    printf("译码时间: %.6f 秒\n", decode_time);
    
    // 计算误码率
    int error_count = 0;
    for (int i = 0; i < code->n; i++) {
        if (transmit_bits[i] != decoded_bits[i]) {
            error_count++;
        }
    }
    double ber = (double)error_count / code->n;
    printf("误比特数: %d/%d, 误码率: %.6f\n", error_count, code->n, ber);
    
    // 释放内存
    free(transmit_bits);
    free(decoded_bits);
    free(modulated);
    free(received);
    free(llr);
    free_ldpc_code(code);
    
    return 0;
}

参考代码 C语言实现LDPC码的译码功能 www.3dddown.com/cna/71075.html

性能优化

1. 内存优化

// 使用稀疏矩阵存储 - 大幅减少内存使用
typedef struct {
    int n, m;
    int *row_ptr;      // CSR格式的行指针
    int *col_idx;      // 列索引
    int *row_weight;
    int *col_weight;
} Sparse_LDPC_Code;

2. 定点数实现

// 使用定点数提高速度 (适用于硬件实现)
typedef int16_t fixed_point;
#define FLOAT_TO_FIXED(x) ((fixed_point)((x) * 256))
#define FIXED_TO_FLOAT(x) ((double)(x) / 256.0)

3. 并行化优化

// OpenMP并行化 (对于大规模LDPC码)
#pragma omp parallel for
for (int i = 0; i < code->m; i++) {
    // 校验节点更新
}

编译指令

gcc -o ldpc_decoder ldpc_decoder.c -lm -O3
# 如果需要OpenMP支持
gcc -o ldpc_decoder ldpc_decoder.c -lm -O3 -fopenmp

算法选择指南

算法 复杂度 性能 适用场景
和积算法 最优 高性能应用,软件实现
最小和算法 良好 硬件实现,实时系统
归一化最小和 接近和积 平衡性能与复杂度
posted @ 2025-12-15 12:00  chen_yig  阅读(20)  评论(0)    收藏  举报