[问题2014A12] 解答

[问题2014A12]  解答

将问题转换成几何的语言: 设 \(\varphi,\psi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 满足 \(\varphi\psi=\psi\varphi=0\), \(\mathrm{r}(\varphi)=\mathrm{r}(\varphi^2)\), 求证: \[\mathrm{r}(\varphi+\psi)=\mathrm{r}(\varphi)+\mathrm{r}(\psi).\cdots(1)\]

要证明 (1) 式, 我们只要证明 \[\mathrm{Im}(\varphi+\psi)=\mathrm{Im\,}\varphi\oplus\mathrm{Im\,}\psi,\cdots(2)\] 再两边同取维数即可. 在证明 (2) 式之前, 我们先引用复旦高代书第 208 页复习题 37 的结论:

结论  设 \(\varphi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 满足 \(\mathrm{r}(\varphi)=\mathrm{r}(\varphi^2)\), 则 \[V=\mathrm{Ker\,}\varphi\oplus\mathrm{Im\,}\varphi.\cdots(3)\]

(2) 式的证明分成两步.

第一步证明 \(\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi=\mathrm{Im\,}\varphi\oplus\mathrm{Im\,}\psi\). 由条件 \(\varphi\psi=0\) 可得 \(\mathrm{Im\,}\psi\subseteq\mathrm{Ker\,}\varphi\), 再由 (3) 式即得 \(\mathrm{Im\,}\varphi\cap\mathrm{Im\,}\psi=0\), 从而上述和为直和.

第二步证明 \(\mathrm{Im}(\varphi+\psi)=\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi\). 由像空间的定义即得 \(\mathrm{Im}(\varphi+\psi)\subseteq\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi\). 反之, 对 \(\mathrm{Im\,}\varphi+\mathrm{Im\,}\psi\) 中任一向量 \(\varphi(\alpha)+\psi(\beta)\), 其中 \(\alpha,\beta\in V\), 考虑 \(\alpha,\beta\) 关于 (3) 式的分解: \[\alpha=\alpha_1+\varphi(u),\,\,\,\,\beta=\beta_1+\varphi(v),\,\,\,\,\alpha_1,\beta_1\in\mathrm{Ker\,}\varphi,\,\,u,v\in V.\] 于是 \begin{eqnarray*}\varphi(\alpha)+\psi(\beta)&=&\varphi(\alpha_1+\varphi(u))+\psi(\beta_1+\varphi(v))=\varphi^2(u)+\psi(\beta_1) \\ &=& (\varphi+\psi)(\beta_1+\varphi(u))\in\mathrm{Im}(\varphi+\psi), \end{eqnarray*} 这就证明了第二步, 从而完成了 (2) 式的证明.  \(\Box\)

  在学了矩阵的 Jordan 标准形理论之后, 我们可以给出 [问题2014A12] 的一个十分简洁的代数证明.

posted @ 2014-12-27 18:04  torsor  阅读(1478)  评论(0编辑  收藏  举报