利用pytorch的datasets在本地读取MNIST数据集进行分类
MNIST数据集下载地址:tensorflow-tutorial-samples/mnist/data_set at master · geektutu/tensorflow-tutorial-samples · GitHub
数据集存放和dataset的参数设置:

完整的MNIST分类代码:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.nn import Sequential
class Simple_CNN(nn.Module):
def __init__(self):
super(Simple_CNN, self).__init__()
self.conv1 = Sequential(
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.conv2 = Sequential(
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2)
)
self.fc1 = Sequential(
nn.Linear(7 * 7 * 128, 1024),
nn.ReLU(),
nn.Dropout(p=0.5),
nn.Linear(1024, 256),
nn.ReLU(),
nn.Dropout(p=0.5),
)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = x.view(x.shape[0], -1)
x = self.fc1(x)
x = self.fc2(x)
return x
def train(model, device, train_loader, test_loader, optimizer, criterion, epochs):
# model.train()
for epoch in range(epochs):
model.train()
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}, Loss: {loss.item()}')
test(model, device, test_loader)
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print(f'Test set: Average loss: {test_loss:.4f}, \
Accuracy: {correct}/{len(test_loader.dataset)} ({100. * correct / len(test_loader.dataset):.0f}%)')
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_dataset = datasets.MNIST(root='dataset/mnist/', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST(root='dataset/mnist/', train=False, download=True, transform=transform)
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
model = Simple_CNN()
model = model.to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
epochs = 5
train(model, device, train_loader, test_loader, optimizer, criterion, epochs)
# test(model, device, test_loader)
torch.save(model, 'model.pth')
print('done')
实验结果:


浙公网安备 33010602011771号