pytorch中如何在lstm中输入可变长的序列
上面两篇文章写得很好,把LSTM中训练变长序列所需的三个函数讲解的很清晰,但是这两篇文章没有给出完整的训练代码,并且没有写关于带label的情况,为此,本文给出一个完整的带label的训练代码:
import torch
from torch import nn
import torch.nn.utils.rnn as rnn_utils
from torch.utils.data import DataLoader
import torch.utils.data as data_
class MyData(data_.Dataset):
def __init__(self, data, label):
self.data = data
self.label = label
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
tuple_ = (self.data[idx], self.label[idx])
return tuple_
def collate_fn(data_tuple): # data_tuple是一个列表,列表中包含batchsize个元组,每个元组中包含数据和标签
data_tuple.sort(key=lambda x: len(x[0]), reverse=True)
data = [sq[0] for sq in data_tuple]
label = [sq[1] for sq in data_tuple]
data_length = [len(sq) for sq in data]
data = rnn_utils.pad_sequence(data, batch_first=True, padding_value=0.0) # 用零补充,使长度对齐
label = rnn_utils.pad_sequence(label, batch_first=True, padding_value=0.0) # 这行代码只是为了把列表变为tensor
return data.unsqueeze(-1), label, data_length
if __name__ == '__main__':
EPOCH = 2
batchsize = 3
hiddensize = 4
num_layers = 2
learning_rate = 0.001
# 训练数据
train_x = [torch.FloatTensor([1, 1, 1, 1, 1, 1, 1]),
torch.FloatTensor([2, 2, 2, 2, 2, 2]),
torch.FloatTensor([3, 3, 3, 3, 3]),
torch.FloatTensor([4, 4, 4, 4]),
torch.FloatTensor([5, 5, 5]),
torch.FloatTensor([6, 6]),
torch.FloatTensor([7])]
# 标签
train_y = [torch.rand(7, hiddensize),
torch.rand(6, hiddensize),
torch.rand(5, hiddensize),
torch.rand(4, hiddensize),
torch.rand(3, hiddensize),
torch.rand(2, hiddensize),
torch.rand(1, hiddensize)]
data_ = MyData(train_x, train_y)
data_loader = DataLoader(data_, batch_size=batchsize, shuffle=True, collate_fn=collate_fn)
net = nn.LSTM(input_size=1, hidden_size=hiddensize, num_layers=num_layers, batch_first=True)
criteria = nn.MSELoss()
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
# 训练方法一
for epoch in range(EPOCH):
for batch_id, (batch_x, batch_y, batch_x_len) in enumerate(data_loader):
batch_x_pack = rnn_utils.pack_padded_sequence(batch_x, batch_x_len, batch_first=True)
out, _ = net(batch_x_pack) # out.data's shape (所有序列总长度, hiddensize)
out_pad, out_len = rnn_utils.pad_packed_sequence(out, batch_first=True)
loss = criteria(out_pad, batch_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('epoch:{:2d}, batch_id:{:2d}, loss:{:6.4f}'.format(epoch, batch_id, loss))
# 训练方法二
for epoch in range(EPOCH):
for batch_id, (batch_x, batch_y, batch_x_len) in enumerate(data_loader):
batch_x_pack = rnn_utils.pack_padded_sequence(batch_x, batch_x_len, batch_first=True)
batch_y_pack = rnn_utils.pack_padded_sequence(batch_y, batch_x_len, batch_first=True)
out, _ = net(batch_x_pack) # out.data's shape (所有序列总长度, hiddensize)
loss = criteria(out.data, batch_y_pack.data)
optimizer.zero_grad()
loss.backward()
optimizer.step()
print('epoch:{:2d}, batch_id:{:2d}, loss:{:6.4f}'.format(epoch, batch_id, loss))
print('Training done!')
运行结果:


浙公网安备 33010602011771号