随笔分类 - 高二
摘要:对于$c>0$,当非零实数$a,b$满足$4a^2-2ab+4b^2-c=0,$且使$|2a+b|$最大时,$\dfrac{3}{a}-\dfrac{4}{b}+\dfrac{5}{c}$的最小值为_____
阅读全文
摘要:(2015华中科技大学理科实验班选拔)
已知三次方程$x^3+ax^2+bx+x=0$有三个实数根.
(1)若三个实根为$x_1,x_2,x_3$,且$x_1\le x_2\le x_3,a,b$为常数,求$c$变化时$x_3-x_1$的取值范围.
(2)若三个实数根为$a,b,c$,求$a,b,c$
阅读全文
摘要:若$\Delta ABC$满足:$\tan\dfrac{A}{2}\cdot\tan\dfrac{C}{2}=\dfrac{1}{3},b=\dfrac{4}{3}a$,则$\sin B=$______
阅读全文
摘要:已知$0{<}x_1{<}c{<}x_2{<}e^{\frac{3}{2}},$且$\dfrac{1-ln(c)}{c^2} = \dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}$,
证明:$c^2{<}x_1x_2$
阅读全文
摘要:已知函数$f(x)=e^x-e^{-x}-2x$
(1)讨论$f(x)$的单调性;
(2)设$g(x)=f(2x)-4bf(x),$当$x>0$时,$g(x)>0,$求$b$的最大值;
(3)已知$1.4142<\sqrt{2}<1.4143$,估计$\ln 2$的近似值(精确到0.001).
阅读全文
摘要:已知$f(x)=\sum\limits_{k=1}^{2017}\dfrac{\cos kx}{\cos^k x},$则$f(\dfrac{\pi}{2018})=$_____
阅读全文
摘要:若不等式$k\sin^2B+\sin A\sin C>19\sin B\sin C$对任意$\Delta ABC$都成立,则$k$的最小值为_____
阅读全文
摘要:已知$f(x)=2ax\cos^2x+(a-1)\cos x-1,a>0$,记$|f(x)|$的最大值为$A$,
1)求A.
2)证明:$|-2a\sin 2x+(1-a)\sin x|\le 2A$
阅读全文
摘要:设函数$f(x)=ax^2+(2b+1)x-a-2$($a,b\in\mathcal R$,$a\neq 0$).
(1) 若$a=-2$,求函数$y=|f(x)|$在$[0,1]$上的最大值$M(b)$;
(2) 若函数$f(x)$在区间$(0,1)$有两个不同的零点,求证:$\dfrac{(2+a)(1-2b)}{a^2}<\dfrac{1}{16}$.
阅读全文
摘要:\begin{equation*}
\textbf{已知}x_1,x_2<\pi,x_{n+1}=x_n+\left\{ \begin{aligned}
sin x_n &,x_n>x_{n+1}\\
cos x_n&,x_n\le x_{n+1}\\
\end{aligned} \right.
\end{equation*}
证明:$ x_n<\dfrac{3\pi}{2}$
阅读全文
摘要:已知 $a$ 为常数,函数$f(x)=\dfrac{x}{\sqrt{a-x^2}-\sqrt{1-x^2}}$ 的最小值为$-\dfrac{2}{3}$,则 $a$ 的取值范围_____
阅读全文
摘要:已知$a+b=1$,求$(a^3+1)(b^3+1)$的最大值_____
阅读全文
摘要:已知$x,y>0,\dfrac{1}{x}+\dfrac{2}{y}=1$,求$\dfrac{1}{x+1}+\dfrac{2}{y+1}$的最大值____
阅读全文
摘要:已知$a,b>0$且$ab(a+b)=4$,求$2a+b$的最小值_____
阅读全文
摘要:已知函数$f(x)=-x^3-3x^2+(1+a)x+b(a<0,b\in R)$,
若$|f(x)|$在$[-2,0]$上的最大值为$M(a,b)$,求$M(a,b)$的最小值
阅读全文
摘要:已知$\{a_n\}$满足$a_1=1,a_2=2,\dfrac{a_{n+2}}{a_n}=\dfrac{a_{n+1}^2+1}{a_n^2+1}$, 求$[a_n]$_____
阅读全文

浙公网安备 33010602011771号