每日导数88
看着吓人,式子变形
设\(f(x)=e^x,g(x)=\ln x\)
(1)已知\(e^x\geq kx\geq \ln x\)恒成立,求\(k\)取值范围
(2)已知直线\(l\)与曲线\(f(x),g(x)\)分别切于点\((x_1,f(x_1)),(x_2,g(x_2))\),其中\(x_1>0\)
(I)求证:\(e^{-2}<x_2<e^{-1}\)
(II)已知\((\lambda x_2-x+1)e^x+x\leq 0\)对任意 \(x\in[x_1,+\infty)\)恒成立,求\(\lambda\)取值范围.
解
(1)因\(e^x,\ln x\)互为反函数,并且\(y=ex\)与\(e^x\)相切,\(y=\dfrac{1}{e}x\)与\(\ln x\)相切,则\(k\in\left[\dfrac{1}{e},e\right]\)
(2)
(I)由题设\(l\)的斜率为\(k\),则有
则有$$\dfrac{\ln x_2-\dfrac{1}{x_2}}{x_2-(-\ln x_2)}=\dfrac{1}{x_2}$$
整理有$$x_2\ln x_2-\ln x_2-x_2-1=0$$
记\(\varphi(t)=t\ln t-\ln t-t-1,\varphi^{\prime}(t)=\ln t+1-\dfrac{1}{t}-1=\ln t-\dfrac{1}{t}\)单调递增
而\(\varphi^{\prime}(e^{-1})=-1-e<0\)
则\(\varphi(t)\)在\((0,e^{-1})\)上单调递减
而
从而由零点存在定理,则\(t\in(e^{-1},e^{-2})\),即\(x_2\in(e^{-1},e^{-2})\)
(II)由(I),得\(x_1\in(1,2)\)
原不等式转化为\(\lambda x_2\leq -xe^{-x}+x-1\)
记\(\gamma(x)=-xe^{-x}+x-1,\gamma^{\prime}(x)=e^{-x}(x-1)+1=\dfrac{x-1+e^x}{e^x}>\dfrac{x-1+x+1}{e^x}=\dfrac{2x}{e^x}>0\)
则\(\lambda x_2\leq \gamma(x)\leq \gamma(x_1)=-x_1e^{-x_1}+x_1-1\)
即\(\lambda\leq -x_1+(x_1-1)e^{x_1}\)
记\(F(t)=-t+(t-1)e^t,F^{\prime}(t)=te^t-1>0\)
则\(\lambda\leq F(t)<F(0)=-1\)
注:下面答案的第三问写法,比我的答案范围大,目前看不出我错在哪里.
由(I)得\(e^{x_1}(x_1-1)=x_1+1\)
前面都一样,则有\(\lambda x_1\leq\gamma(x) \leq \gamma(x_1)=\dfrac{e^{x_1}(x_1-1)-x_1}{e^{x_1}}=\dfrac{1}{e^{x_1}}\)
则\(\lambda\leq 1\)