每日导数87
打开绝对值,隐零点
已知函数\(f(x)=ae^x-\dfrac{1}{x}\)
(1)讨论\(f(x)\)零点个数
(2)当\(a>0\)时,\(|f(x)|>1+\ln x\),求\(a\)的取值范围
解
(1)\(f(x)=ae^x-\dfrac{1}{x}=0\)
即\(ax=e^{-x}\),因\(y=-ex\)与\(y=e^{-x}\)相切
则有\(a\in\begin{cases} \{-e \}\cup(0,+\infty),&\text{一个零点}\\ (-\infty,-e),&\text{两个零点}\\ \{0\},&\text{零个零点} \end{cases}\)
(2)当\(a>0\)时,\(f(x)\)单调递增
因\(x\to 0,f(x)\to +\infty,f(x)\to-\infty,x\to+\infty,f(x)\to+\infty\)
则一定存在\(x_0\)使得\(f(x_0)=0\)
即\(ae^{x_0}-\dfrac{1}{x_0}=0\)
即\(\ln a=-\ln x_0-x_0\)
因\(f\left(\dfrac{1}{a}\right)=ae^{\frac{1}{a}}-a=a\left(e^{\frac{1}{a}}-1\right)>0\),则\(x_0<\dfrac{1}{a}\)
当\(x\in(0,x_0)\)时,\(|f(x)|=\dfrac{1}{x}-ae^x\)
则原不等式为\(\dfrac{1}{x}-ae^x-1-\ln x>0\)恒成立
记\(\varphi(x)=\dfrac{1}{x}-ae^x-1-\ln x\),\(\varphi^{\prime}(x)=-\dfrac{1}{x^2}-ae^x-\dfrac{1}{x}<0\)
则\(\varphi(x)\)单调递减
从而有\(\varphi(x_0)>0\)
即\(-1-\ln x_0>0\),得\(x_0<\dfrac{1}{e}\)
而\(\ln a=-\ln x_0-x_0\)
得\(\ln a>-\ln\dfrac{1}{e}-\dfrac{1}{e}=1-\dfrac{1}{e}\)
即\(a>e^{1-\frac{1}{e}}\)
当\(x>x_0\)时,原不等式为\(ae^x-\dfrac{1}{x}-1-\ln x>0\)
记\(\gamma(x)=ae^x-\dfrac{1}{x}-1-\ln x,\gamma^{\prime}(x)=ae^x+\dfrac{1}{x^2}-\dfrac{1}{x}=\dfrac{1}{x^2}+f(x)>0\)
则\(\gamma(x)>\gamma(x_0)\),即\(-1-\ln x_0>0\)
得\(x_0<\dfrac{1}{e}\),同上得到\(a>e^{1-\frac{1}{e}}\)
综上\(a>e^{1-\frac{1}{e}}\)

浙公网安备 33010602011771号